Answer:
1.
Explanation:
Hello,
In this case, for the given reaction we first assign the oxidation state for each species:

Whereas the half reactions are:

Next, we exchange the transferred electrons:

Afterwards, we add them to obtain:

By adding and subtracting common terms we obtain:

Finally, by removing the oxidation states we have:

Therefore, the smallest whole-number coefficient for Sn is 1.
Regards.
Answer:
Explanation:
<u>1. Word equation:</u>
- <em>mercury(II) oxide → mercury + oxygen </em>
<u>2. Balanced molecular equation:</u>
<u>3. Mole ratio</u>
Write the ratio of the coefficients of the substances that are object of the problem:

<u>4. Calculate the number of moles of O₂(g)</u>
Use the equation for ideal gases:

<u>5. Calculate the number of moles of HgO</u>

<u>6. Convert to mass</u>
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g
Explanation:
I think the answer is this for a better check mass- mass ratio in stoichiometry lesson
Molarity (concentration) can be calculated by the equation:
Concentration = moles / volume in L = 0.54 mol / 0.6 L = 0.9 M
Hope this helps!