Answer:
they all have the same amount of kinetic energy
Answer: kg= 0.37
Explanation:
Use the molality formula.
M= m/kg
Answer:
For part (a): pHsol=2.22
Explanation:
I will show you how to solve part (a), so that you can use this example to solve part (b) on your own.
So, you're dealing with formic acid, HCOOH, a weak acid that does not dissociate completely in aqueous solution. This means that an equilibrium will be established between the unionized and ionized forms of the acid.
You can use an ICE table and the initial concentration ofthe acid to determine the concentrations of the conjugate base and of the hydronium ions tha are produced when the acid ionizes
HCOOH(aq]+H2O(l]⇌ HCOO−(aq] + H3O+(aq]
I 0.20 0 0
C (−x) (+x) (+x)
E (0.20−x) x x
You need to use the acid's pKa to determine its acid dissociation constant, Ka, which is equal to
15 grams of NH3 can be dissolved
<h3>Further explanation</h3>
Given
50 grams of water at 50°C
Required
mass of NH3
Solution
Solubility is the maximum amount of a substance that can dissolve in some solvents. Factors that affect solubility
- 1. Temperature:
- 2. Surface area:
- 3. Solvent type:
- 4. Stirring process:
We can use solubility chart (attached) to determine the solubility of NH3 at 50°C
From the graph, we can see that the solubility of NH3 in 100 g of water at 50 C is 30 g
So that the solubility in 50 grams of water is:
= 50/100 x 30
= 15 grams