Answer:
18 electrons
Explanation:
Note: The third energy level can actually hold up to 18 electrons, so it is not really filled when it has 8 electrons in it.
One can solve the problem by using the law of conservation of momentum. The total momentum prior to the collision must be equivalent to the total momentum after the collision, so we have:
m1v1 + m2v2 = m1v1 + m2v2
Here, m1 is 0.4 Kg that is the mass of the ball, u1 is 18 m/s that is the initial velocity of the ball, m2 is 0.2 Kg that is the mass of the bottle, and u2 is 0 that is the initial velocity of the bottle.
v1 is the final velocity of the ball, which is to be determined, and v2 is 25 m/s that is the final velocity of the bottle.
Substituting and rearranging the equation, one can find the final velocity of the ball:
v1 = m1u1 - m2v2 / m1 = (0.4 kg) (18 m/s) - (0.2 Kg) (25 m/s) / 0.4 Kg = 5.5 m/s.
Explanation:
proton number and neutron number sums up to form the mass number
Answer: 44.37 degrees C
Explanation:
Use combined gas law: (P1)(V1)/T1=(P2)(V2)/T2
For most gas laws, you must convert to Kelvin:
K=deg C+273
K=25+273=298 K
Plug and chug:
(1.0 atm)(1.2 L)/(298 K)=(0.71 atm)(1.8 L)/(x)
Solve for x and get 317.37 K
Subtract 273 from this to convert to degrees Celsius. You will get 44.37 degrees Celsius.
If you want additional help in chemistry or another subject for FREE, check out growthinyouth.org
Answer:
(1) Nuclear reactions entail a transition in the nucleus of an atom, which normally results in the formation of a new substance. Chemical reactions, on the other hand, only involve electron rearrangement and do not involve nuclei modifications. (4) Nuclear reactions are unaffected by the element's chemical form.
Explanation:
Hope this helps!
Please mark me as Brainlinieast.