Answer:
It is composed of 57.17% S and 42.83% C and has a molar mass of 448.70 g/mol. Determine the empirical and molecular formulas of “sulflower.”
...
what is the molecular formula of the compound?
Empirical formula Molar mass (g/mol) Molecular formula
CHO 116.1
C8H16
Explanation:
Hope this helps
Answer: Here's the answer hope this helps
Explanation:
Answer:
The incorrect statement is: SO₂ gains electrons
Explanation:
A chemical reaction that involves the simultaneous transfer of electrons between two chemical species, is known as the redox reaction.
Given chemical reaction: 2SO₂(g) + O₂(g) → 2SO₃(g)
In this redox reaction, S is present in +4 oxidation state in SO₂ and +6 oxidation state SO₃. Whereas, O is present in 0 oxidation state in O₂ and -2 oxidation state in SO₃.
<u>Therefore, SO₂ loses electrons and thus gets oxidized. Whereas, O₂ gains electrons and thus gets reduced. </u>
<u>In this reaction, SO₂ is the reducing agent and O₂ is the oxidizing agent.</u>
Answer:
The Bronsted-Lowery acid is H2O
The Bronsted-Lowery base is CO3
The conjugate acid is HCO3
The conjugate base is OH
Explanation:
Molocules that lose a hydrogen in a reaction act as an acid, and those that recieve one act as a base.
Answer:
0.600 g/cm³
Explanation:
Step 1: Given data
- Height of the cylinder (h): 6.62 cm
- Diameter of the cylinder (d): 2.34 cm
- Mass of the cylinder (m): 17.1 g
Step 2: Calculate the volume of the cylinder
First, we have to determine the radius, which is half of the diameter.
r = d/2 = 2.34 cm/2 = 1.17 cm
Then, we use the formula for the volume of the cylinder.
V= π × r² × h
V= π × (1.17 cm)² × 6.62 cm
V = 28.5 cm³
Step 3: Calculate the density (ρ) of the sample
The density is equal to the mass divided by the volume.
ρ = m/V
ρ = 17.1 g/28.5 cm³
ρ = 0.600 g/cm³