Hello!
The H₃O⁺ concentration can be found using the definition of pH and clearing the equation for [H₃O⁺]. The solution has a pH lower than 7, so the Sauvignon Blanc is
acid. The calculation for [H₃O⁺] is shown below:
![pH=-log [H_3O^{+}]](https://tex.z-dn.net/?f=pH%3D-log%20%5BH_3O%5E%7B%2B%7D%5D%20)
![[H_3O^{+}]= 10^{-pH}=10^{-3,24}=0,00058M](https://tex.z-dn.net/?f=%5BH_3O%5E%7B%2B%7D%5D%3D%2010%5E%7B-pH%7D%3D10%5E%7B-3%2C24%7D%3D0%2C00058M%20)
So, the concentration of H₃O⁺ in a Sauvignon Blanc with a pH of 3,24 is
0,00058 MHave a nice day!
Answer:
1.12 × 10⁻⁴ M
Explanation:
Step 1: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 2: Make an ICE chart
We can relate the solubility product constant (Ksp) with the solubility (S) through an ICE chart.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Ksp = 5.61 × 10⁻¹² = [Mg²⁺] × [OH⁻]² = S × (2S)² = 4S³
S = 1.12 × 10⁻⁴ M
Answer:
1s2 2s2 2p3
Explanation:
we know that the number of electrons in an atom is equal to number of protons. So the number of electrons here is 7.
Using Moller chart, the electronic configuration is writen by the electrons first enterring into 1s then into 2s after 2p. The s orbital accomodates maximum of 2 electrons.
∴ for atomic no. 7 nitrogen atom, electronic configuration is 1s2 2s2 2p3.
Answer:
m(H₂O) = 97,2 g.n(H₂O) = m(H₂O) ÷ M(H₂O).n(H₂O) = 97,2 g ÷ 18
Explanation: