In this item, we are simply to find the ions that may bond and are able to form a formula unit. We are also instructed to give out their name. There are numerous possible combinations of ions to form a compound. Some answers are given in the list below.
1. Na⁺ , Cl⁻ , NaCl ---> sodium chloride (this is most commonly known as table salt)
2. C⁴⁺ , O²⁻ , CO₂ ---> carbon dioxide
3. Al³+ , Cl⁻ , AlCl₃ ----> aluminum chloride
4. Ca²⁺ , Cl⁻ , CaCl₂ ---> calcium chloride
5. Li⁺ , Br⁻ , LiBr ---> lithium bromide
6. Mg³⁺ , O²⁻ , Mg₂O₃ ----> magnesium oxide
7. K⁺ , I⁻ , KI ---> potassium iodide
8. H⁺ , Cl⁻ , HCl --> hydrogen chloride
9. H⁺ , Br⁻ , HBr ----> hydrogen bromide
10. Na⁺ , Br⁻ , NaBr ---> sodium bromide
<u>Answer:</u> The net ionic equation for the given reaction is 
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are the ions which do not get involved in a chemical equation. It is also defined as the ions that are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of hydrochloric acid and potassium sulfite is given as:

Ionic form of the above equation follows:

As, potassium and chloride ions are present on both the sides of the reaction, thus, it will not be present in the net ionic equation.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation for the given reaction is written above.
potassium reacts the most vigorously.
If, in a peptide chain, there were 85 amino acids each joined by peptide bonds, there would only be 1 N-terminus group that would be present. The N-terminus group is always the start of the chain of a amino acid chain or a protein or a polypeptide. It refers to the free amine group present that is located at the end part of the chain. So, that no matter how many amino acids in a chain there would always be only one N-terminus group.