When we have:
Zn(OH)2 → Zn2+ 2OH- with Ksp = 3 x 10 ^-16
and:
Zn2+ + 4OH- → Zn(OH)4 2- with Kf = 2 x 10^15
by mixing those equations together:
Zn(OH)2 + 2OH- → Zn(OH)4 2- with K = Kf *Ksp = 3 x 10^-16 * 2x10^15 =0.6
by using ICE table:
Zn(OH)2 + 2OH- → Zn(OH)4 2-
initial 2m 0
change -2X +X
Equ 2-2X X
when we assume that the solubility is X
and when K = [Zn(OH)4 2-] / [OH-]^2
0.6 = X / (2-2X)^2 by solving this equation for X
∴ X = 0.53 m
∴ the solubility of Zn(OH)2 = 0.53 M
Answer:
(a)
(b) 
Explanation:
The reaction that is carried out by the enzyme catalase produces
The reaction that is carried out by the enzyme catalase produces 
Answer:
not sure about 6 but 7 should be c
Explanation:
..
1 mm (millimeter) = 0.000001 km (kilometer)
12.5 mm = <span>0.0000125 km
1 mm = </span><span>0.00001 hm (hectometer)
12.5 mm = </span><span>0.000125 hm
1 mm = </span>0.001 m (meter)
12.5 mm = 0.0125 m
1 mm = 0.1 cm (centimeter)
12.5 mm = 1.25 cm
So the only one of the answer choices that doesn't equal 12.5 mm is 0.00125 hm, since 12.5 mm is <span>0.000125 hm.
Answer:
</span><span>0.00125 hm
</span><span>
Hope this helps!</span>
The substances which allow the current to flow in the circuit are:
Lithium bromide in a solution and Graphite.
Lithium bromide can be pass the current in the circuit, due to the ability to form ions in the solution Li⁺ and Br⁻ which are mobile and can transport the electrical charge.
In the graphite because of the presence of delocalised electrons, each carbon atom forms three covalent bonds with three other carbon atoms, it conducts electrical current.
In the case of potassium chloride lattice there are in a solid form and the atoms are not mobile so they can not form ions. In the diamond all the carbon valences are satisfied so the electrical charge can not be transported.
Nitric oxide in a solution is isolated and can not transport the electrical current due to its inability of the to form ions
.