Answer:
- Not balanced.
- Reactants: Zn and HCI
.
- Products: ZnCl₂ and H₂.
- Substitution reaction.
Explanation:
Hello,
In this case, for the given reaction:
Zn + HCI → ZnCl₂ + H₂
We can see that it is not balanced due to the fact that at the left side we have one hydrogen atom whereas at the right side two, taking into account the number must be same as well as chlorine. Thus, in order to balance we write:
Zn + 2HCI → ZnCl₂ + H₂
And that is enough. Moreover, we can see that the chemical species at the left side of the equation are the reactants and those at the right side the products, thus we have:
Reactants: Zn and HCI
.
Products: ZnCl₂ and H₂.
Finally, since we can see that the chlorine is at the reactants with hydrogen, but at the end with the zinc, and the initial zinc is alone as well as the yielded hydrogen we can infer this is a substitution reaction.
Best regards.
"CH4" is the one gas among the choices given in the question that <span>would have the fastest rate of effusion. The correct option among all the options that are given in the question is the second option or option "B". I hope that this is the answer that has actually come to your great help.</span>
Only writing this because need to ask a question sorry
Answer:
venus at evenig you can see or at 4.00am
Answer:
Explanation:
522 g
Explanation:
Your starting point here will be the balanced chemical equation for this combustion reaction
4
P
(s]
+
5
O
2(g]
→
2
P
2
O
5(s]
Notice that you have a
4
:
5
mole ratio between phosphorus and oxygen. This means that, regardless of how many moles of phosphorus you have, the reaction will always need
5
4
time more moles of oxygen gas.
Use phosphorus' molar mass to determine how many moles you have in that
93.0-g
sample
93.0
g
⋅
1mole P
30.974
g
=
3.0025 moles P
Use the aforementioned mole ratio to determine how many moles of oxygen you would need for many moles of phosphorus to completely take part in the reaction
3.0025
moles P
⋅
5
moles O
2
4
moles P
=
3.753 moles O
2