The balanced equation that shows the reaction between oxalic acid and permanganate ion in an acidic medium is: 2MnO4- + 5H2C2O4 + 6H+ -> 2Mn(2+) + 10CO2 + 8H2O. Thus, 1 mole of oxalic acid reacts with 0.4 mole of permanganate ion. This was obtained using stoichiometry:
1 mol H2C2O4 x (2 mol MnO4-/ 5 mol H2C2O4) = 0.4 mol MnO4-
In this redox reaction, the permanganate is reduced to manganese(II) ion.
Answer:
<h2>pH = 4.44 </h2>
Explanation:
The pH of a substance can be found by using the formula
![p H = - log[ H^{ + } ]](https://tex.z-dn.net/?f=p%20H%20%20%3D%20%20-%20%20%20log%5B%20H%5E%7B%20%2B%20%7D%20%20%5D)
where [ H+ ] is the hydrogen ion concentration of the solution
From the question
[ H + ] = 3.60 × 10^-5 M
So the pH is

We have the final answer as
<h3>pH = 4.44 </h3>
Hope this helps you
Answer:
See explanation
Explanation:
The electron configuration of an atom in an element determines the property of the atom. The core electrons are found inside the atom while the valence electrons are found on the outermost shell of the atom.
For cobalt, the outermost shell electron configuration is; [Ar] 3d7 4s2. The 3d7 and 4s2 are found in the valence shell of cobalt.
For arsenic, the electronic configuration is [Ar] 3d¹⁰ 4s² 4p³. The valence electrons are 4s2, 4p3. The 3d electrons are found inside the arsenic atom.
Although all gases closely follow the ideal gas law PV = nRT under appropriate conditions, each gas is also a unique chemical substance consisting of molecular units that have definite masses. In this lesson we will see how these molecular masses affect the properties of gases that conform to the ideal gas law.