Answer:

Explanation:
The gravitational force between the proton and the electron is given by

where
G is the gravitational constant
is the proton mass
is the electron mass
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

The electrical force between the proton and the electron is given by

where
k is the Coulomb constant
is the elementary charge (charge of the proton and of the electron)
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

So, the ratio of the electrical force to the gravitational force is

So, we see that the electrical force is much larger than the gravitational force.
The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
To the Earth in less than ten minutes.
I think you would be using a topographic Map, So the answer should be A