1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
4 years ago
5

Which of the following is not an example of a polymer?

Physics
2 answers:
Gala2k [10]4 years ago
8 0
Concrete is not a polymer which Nylon, and Kevlar are
notsponge [240]4 years ago
4 0
<span>Which of the following is not an example of a polymer?  
</span>concrete
You might be interested in
Atomic physicists usually ignore the effect of gravity within an atom. To see why, we may calculate and compare the magnitude of
STatiana [176]

Answer:

2.27\cdot 10^{49}

Explanation:

The gravitational force between the proton and the electron is given by

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p is the proton mass

m_e is the electron mass

r = 3 m is the distance between the proton and the electron

Substituting numbers into the equation,

F_G=(6.67259\cdot 10^{-11} m^3 kg s^{-2})\frac{(1.67262\cdot 10^{-27}kg) (9.10939\cdot 10^{-31}kg)}{(3 m)^2}=1.13\cdot 10^{-68}N

The electrical force between the proton and the electron is given by

F_E=k\frac{q_p q_e}{r^2}

where

k is the Coulomb constant

q_p = q_e = q is the elementary charge (charge of the proton and of the electron)

r = 3 m is the distance between the proton and the electron

Substituting numbers into the equation,

F_E=(8.98755\cdot 10^9 Nm^2 C^{-2})\frac{(1.602\cdot 10^{-19}C)^2}{(3 m)^2}=2.56\cdot 10^{-19}N

So, the ratio of the electrical force to the gravitational force is

\frac{F_E}{F_G}=\frac{2.56\cdot 10^{-19} N}{1.13\cdot 10^{-68}N}=2.27\cdot 10^{49}

So, we see that the electrical force is much larger than the gravitational force.

5 0
3 years ago
which planet should punch travel to if his goal is to weigh in at 118 lb? refer to the table of planetary masses and radii given
Harrizon [31]

The planet that Punch should travel to in order to weigh 118 lb is Pentune.

<h3 /><h3 /><h3>The given parameters:</h3>
  • Weight of Punch on Earth = 236 lb
  • Desired weight = 118 lb

The mass of Punch will be constant in every planet;

W = mg\\\\m = \frac{W}{g}\\\\m = \frac{236}{g}

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

F = mg = \frac{GmM}{R^2} \\\\g = \frac{GM}{R^2}

where;

  • M is the mass of Earth = 5.972 x 10²⁴ kg
  • R is the Radius of Earth = 6,371 km

For Planet Tehar;

g_T =\frac{G \times 2.1M}{(0.8R)^2} \\\\g_T = 3.28(\frac{GM}{R^2} )\\\\g_T = 3.28 g

For planet Loput:

g_L =\frac{G \times 5.6M}{(1.7R)^2} \\\\g_L = 1.94(\frac{GM}{R^2} )\\\\g_L = 1.94g

For planet Cremury:

g_C =\frac{G \times 0.36M}{(0.3R)^2} \\\\g_C = 4(\frac{GM}{R^2} )\\\\g_C = 4 g

For Planet Suven:

g_s =\frac{G \times 12M}{(2.8R)^2} \\\\g_s = 1.53(\frac{GM}{R^2} )\\\\g_s = 1.53 g

For Planet Pentune;

g_P =\frac{G \times 8.3 }{(4.1R)^2} \\\\g_P = 0.5(\frac{GM}{R^2} )\\\\g_P = 0.5 g

For Planet Rams;

g_R =\frac{G \times 9.3M}{(4R)^2} \\\\g_R = 0.58(\frac{GM}{R^2} )\\\\g_R = 0.58 g

The weight Punch on Each Planet at a constant mass is calculated as follows;

W = mg\\\\W_T = mg_T\\\\W_T = \frac{236}{g} \times 3.28g = 774.08 \ lb\\\\W_L = \frac{236}{g} \times 1.94g =457.84 \ lb\\\\ W_C = \frac{236}{g}\times 4g = 944 \ lb \\\\ W_S = \frac{236}{g} \times 1.53g = 361.08 \ lb\\\\W_P = \frac{236}{g} \times 0.5 g = 118 \ lb\\\\W_R = \frac{236}{g} \times 0.58 g = 136.88 \ lb

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.

<u>The </u><u>complete question</u><u> is below</u>:

Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.

Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).

<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>

Learn more about effect of gravity on weight here: brainly.com/question/3908593

5 0
2 years ago
Two identical masses are connected to two different flywheels that are initially stationary. Flywheel A is larger and has more m
inysia [295]

Answer:

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

c) True. Information is missing to perform the calculation

Explanation:

Let's consider solving this exercise before seeing the final statements.

We use Newton's second law Rotational

      τ = I α

     T r = I α

     T gR = I α

     Alf = T R / I (1)

     T = α I / R

Now let's use Newton's second law in the mass that descends

     W- T = m a

     a = (m g -T) / m

The two accelerations need related

     a = R α

    α = a / R

    a = (m g - α I / R) / m

    R α = g - α I /m R

    α (R + I / mR) = g

    α = g / R (1 + I / mR²)

We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant

Let's review the claims

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

b) False. Missing data for calculation

c) True. Information is missing to perform the calculation

d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases

4 0
3 years ago
Light can travel from the sun to ________ in less than ten minutes.
Solnce55 [7]
To the Earth in less than ten minutes. 
5 0
3 years ago
Which type of map would you most likely use to locate mineral deposits? A. topographic B. geologic C. satellite D. hazard
qwelly [4]
I think you would be using a topographic Map, So the answer should be A
3 0
3 years ago
Other questions:
  • 1200 meters is less than 1 kilometer
    6·2 answers
  • According to Newton’s first law of motion, when will an object at rest begin to move?
    12·1 answer
  • Robert Hook discovered cells when viewing a _____ under a microscope.
    9·2 answers
  • Explain where most of the mass of an atom is located. Also, explain why some particles that make up the atom do not contribute m
    14·2 answers
  • 1.
    8·1 answer
  • Which of the following is not a function of PACs?
    8·2 answers
  • A 59.31 kg rock is sitting at the top of a cliff that is 300 m tall. What is the gravitational potential energy of that rock?
    7·1 answer
  • Simone is walking her dog on a leash. The dog is pulling with a force of 32 N to the right and Simone is pulling backward with a
    6·2 answers
  • Which of the statements below describes how a motor operates
    11·1 answer
  • Nuclide X has a higher rate of decay than nuclide Y. Based on this information, which of the following statements must be true?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!