Answer: 1896.55J/kg°C
Explanation:
The quantity of Heat Energy (Q) required to heat a material depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 1320 joules
Mass of material = 5.61kg
C = ? (let unknown value be Z)
Φ = 0.124°C
Then, Q = MCΦ
1320J = 5.61kg x Z x 0.124°C
1320J = 0.696kg°C x Z
Z = (1320J / 0.696kg°C)
Z = 1896.55 J/kg°C
Thus, the specific heat of the material is 1896.55J/kg°C
"<span>The image would be upside down, would look as tall as you, and would be at the same distance from the mirror as you are" is the type of image among the choices given in the question that would be projected. The correct option among all the options that are given in the question is the first option. I hope it helps you.</span>
Answer:
C) Use a battery with more voltage.
Explanation:
The equation for the magnetic field around a coil is given by,
B = μ₀NI
where,
B = Magnetic flux density
μ₀ = permeability
N = number of turns per meter
I = Current in the wire
So when using a higher voltage battery, more current passes through the battery as resistance of the wire remains the same.