1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
8

An antique carousel that’s powered by a large electric motor undergoes constant angular acceleration from rest to full rotationa

l speed in 5.00 seconds. When the ride ends, a brake causes it to decelerate steadily from full rotational speed to rest in 11.0 seconds. Compare the torque that starts the carousel to the torque that stops it. τstart/τstop = the tolerance is +/-2%
Physics
1 answer:
SVEN [57.7K]3 years ago
8 0
1) For a rotating object, we can write the analogous of Newton's second law as
\tau = I \alpha
where \tau is the torque applied to the object, I is the moment of inertia and \alpha is the angular acceleration.

2) We can write the ratio between the starting torque and the stopping torque as:
\frac{\tau _{start}}{\tau _{stop}} =  \frac{I \alpha _{start}}{I \alpha _{stop}}   =  \frac{ \alpha _{start}}{\alpha _{stop}}

3) Then, we can rewrite the two angular accelerations. The general formula is
\alpha =  \frac{\omega _f - \omega _i}{t}
where \omega _f and \omega _i are the final and initial angular velocities, while t is the time. 

4) Let's start by calculating the starting acceleration. In this case, the initial velocity is zero, while the final velocity is the full rotational speed (let's call it \omega _{max}, and the time is t=5.0 s:
\alpha _{start} =  \frac{\omega_{max}-0}{5 s}=  \frac{\omega_{max}}{5 s}=
When the carousel stops, instead, the initial velocity is \omega _{max} while the final velocity is 0, and the time is t=11.0 s:
\alpha _{stop} =  \frac{0-\omega _{max}}{11 s}= \frac{-\omega _{max}}{11 s}
Therefore, if we replace the two angular accelerations that we found into the formula of the torque ration written at step 2), we find:
\frac{\tau _{start}}{\tau _{stop}} = - \frac{11}{5}
where the negative sign simply means that the two torques have opposite direction. Therefore, the ratio between starting and stopping torque is 11:5.

You might be interested in
A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference b
Lesechka [4]

Answer:

a)  Q = 397.57 pC , Q = 3.18 104 pC , b) C = 1.157 10⁻¹⁰ F ,  V = 3.4375 V ,

c)  U = 54.7 nJ ,  d) ΔU = 54 nJ,

Explanation:

a) The capacity of a capacitor is defined

        C = Q / V

        Q = C V

         

can also be calculated using geometry consideration

        C = e or A / d

         

we reduce to the SI system

       A = 25.0 cm² (1 m / 10² cm) 2 = 25.0 10⁻⁴ m²

       d = 1.53 cm = 1.53 10⁻² m

we substitute

         Q = eo A / d V

         Q = 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻² 275

         Q = 3.9757 10⁻¹⁰ C

         

let's reduce to pC

         Q = 3.9757 10⁻¹⁰ C (10¹² pC / 1 C)

          Q = 397.57 pC

when the capacitor is introduced into the water the dielectric constant is different

           Q = k Q₀

           Q = 80 397.57

           Q = 3.18 104 pC

b) Find capacitance and voltage after submerged in water

           C = k C₀

           C = 80 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²

           C = 1.157 10⁻¹⁰ F

           V = Vo / k

            V = 275/80

            V = 3.4375 V

c) The stored energy is

             U = ½ C V²

              U = ½, 85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²     275²

             U = 5.47 10⁻⁸ J

let's reduce to nJ

              109 nJ = 1 J

               U = 54.7 nJ

d) energy after submerging

             U = ½ (kCo) (Vo / k) 2

             U = ½ Co Vo2 / k

             U = U₀ / k

             U = 54.7 / 80 nJ

              U = 0.68375 nJ

the energy change is

         ΔU = U₀ -U

          ΔU = 54.7 - 0.687375

           

6 0
3 years ago
75kg man climbs a mountain 1000m high in 3hrs and uses 4100 joulse/min. (a) calculate the power consumption in watt, (b) what is
mr Goodwill [35]

Answer:

Explanation:

a) Power consumption is 4100 J/min / 60 s/min = 68.3 W(atts)

work done raised the potential energy

b) 75(9.8)(1000) / (3(3600)) = 68.055555... 68.1 W

c) efficiency is 68.1 / 68.3 = 0.99593... or nearly 100%

Not a very likely scenario.

3 0
3 years ago
Contact force that acts to resist sliding between two touching surfaces
Black_prince [1.1K]
I think that the answer is friction 
3 0
3 years ago
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
If an object were released in space far away from planted or stars and given an initial momentum, describe what would happen to
mamaluj [8]
Strange as it may seem, the object would keep moving, in a straight line and at the same speed, until it came near another object. Its momentum and kinetic energy would never change. It might continue like that for a billion years or more.

Have a look at Newton's first law of motion.
7 0
3 years ago
Read 2 more answers
Other questions:
  • Can u answer 4 and 5 for me
    11·1 answer
  • How much power is necessary to do 50 J of work in 5 seconds
    13·2 answers
  • Two events are observed in a frame of reference S to occur at the same space point, with the second event occurring after a time
    14·1 answer
  • What are the different isotopes
    6·1 answer
  • Why do you think nutrition experts recommend that young people<br> eat foods high in calcium?
    9·1 answer
  • Which of these structures is an architect most likely to design?
    12·2 answers
  • 2. An element is a mixture of two isotopes. One isotope has an atomic mass of 34.969 amu and an
    14·2 answers
  • . A 2.0-m wire carries a current of 15 A directed along the positive x axis in a region where the magnetic field is uniform and
    5·1 answer
  • What is acceleration
    11·1 answer
  • EVERYONE BE AWARE IF YOU GET SENT SOMETHING LIKE THIS (Answer is in the photo. I can only upload it to a file hosting service. l
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!