1) For a rotating object, we can write the analogous of Newton's second law as
![\tau = I \alpha](https://tex.z-dn.net/?f=%5Ctau%20%3D%20I%20%5Calpha)
where
![\tau](https://tex.z-dn.net/?f=%5Ctau)
is the torque applied to the object, I is the moment of inertia and
![\alpha](https://tex.z-dn.net/?f=%5Calpha%20)
is the angular acceleration.
2) We can write the ratio between the starting torque and the stopping torque as:
![\frac{\tau _{start}}{\tau _{stop}} = \frac{I \alpha _{start}}{I \alpha _{stop}} = \frac{ \alpha _{start}}{\alpha _{stop}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Ctau%20_%7Bstart%7D%7D%7B%5Ctau%20_%7Bstop%7D%7D%20%3D%20%20%5Cfrac%7BI%20%5Calpha%20_%7Bstart%7D%7D%7BI%20%5Calpha%20_%7Bstop%7D%7D%20%20%20%3D%20%20%5Cfrac%7B%20%5Calpha%20_%7Bstart%7D%7D%7B%5Calpha%20_%7Bstop%7D%7D%20)
3) Then, we can rewrite the two angular accelerations. The general formula is
![\alpha = \frac{\omega _f - \omega _i}{t}](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%20%5Cfrac%7B%5Comega%20_f%20-%20%5Comega%20_i%7D%7Bt%7D%20)
where
![\omega _f](https://tex.z-dn.net/?f=%5Comega%20_f%20)
and
![\omega _i](https://tex.z-dn.net/?f=%5Comega%20_i)
are the final and initial angular velocities, while t is the time.
4) Let's start by calculating the starting acceleration. In this case, the initial velocity is zero, while the final velocity is the full rotational speed (let's call it
![\omega _{max}](https://tex.z-dn.net/?f=%5Comega%20_%7Bmax%7D)
, and the time is t=5.0 s:
![\alpha _{start} = \frac{\omega_{max}-0}{5 s}= \frac{\omega_{max}}{5 s}=](https://tex.z-dn.net/?f=%5Calpha%20_%7Bstart%7D%20%3D%20%20%5Cfrac%7B%5Comega_%7Bmax%7D-0%7D%7B5%20s%7D%3D%20%20%5Cfrac%7B%5Comega_%7Bmax%7D%7D%7B5%20s%7D%3D)
When the carousel stops, instead, the initial velocity is
![\omega _{max}](https://tex.z-dn.net/?f=%5Comega%20_%7Bmax%7D)
while the final velocity is 0, and the time is t=11.0 s:
![\alpha _{stop} = \frac{0-\omega _{max}}{11 s}= \frac{-\omega _{max}}{11 s}](https://tex.z-dn.net/?f=%5Calpha%20_%7Bstop%7D%20%3D%20%20%5Cfrac%7B0-%5Comega%20_%7Bmax%7D%7D%7B11%20s%7D%3D%20%5Cfrac%7B-%5Comega%20_%7Bmax%7D%7D%7B11%20s%7D%20%20)
Therefore, if we replace the two angular accelerations that we found into the formula of the torque ration written at step 2), we find:
![\frac{\tau _{start}}{\tau _{stop}} = - \frac{11}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Ctau%20_%7Bstart%7D%7D%7B%5Ctau%20_%7Bstop%7D%7D%20%3D%20-%20%5Cfrac%7B11%7D%7B5%7D%20%20)
where the negative sign simply means that the two torques have opposite direction. Therefore, the ratio between starting and stopping torque is 11:5.