Cost of repairing the pool is
= Rs 12750
Correct me if i'm wrong
Answer:
x=4
Step-by-step explanation:
Since x+2 is half the size of 3x:
2(x+2)=3x
2x+4=3x
4=3x-2x
x=4
Answer:
The entire area of the sailboat is 60cm²
Step-by-step explanation:
You can find the area of this shape by breaking it down into simpler shapes and adding up their individual areas.
In this case, the areas we'll use are the rectangle at the bottom, and the pair of triangles at the top.
Because the two triangles can be put together to form a single triangle, we don't need to measure them independently. We can simply take the total length of their bases, multiply it by their height, and divide by two. This follows the rule that the area of a triangle is equal to the area of the square that contains it divided by two.
(2cm + 3cm) × 6cm
= 5cm × 6cm
= 30cm²
The rectangle's area is of course equal to its width times its height, so we can say:
2.5cm × 12cm
= 30cm²
The total area of the shapes then is 30cm² + 30 cm², giving us a total area of 60cm²
Answer:
y=x-2
Step-by-step explanation:
to get -2 to -4 you would have to add -2
if we follow the pattern of subtracting 2 then you would see that -2 is b sense we are subtracting.
The m value doesn't have to change so we would leave the x how it is
The goal for this question is to find the pattern the numbers share though out the table.
Make a substitution:

Then the system becomes
![\begin{cases}\dfrac{2\sqrt[3]{u}}{u-v}+\dfrac{2\sqrt[3]{u}}{u+v}=\dfrac{81}{182}\\\\\dfrac{2\sqrt[3]{v}}{u-v}-\dfrac{2\sqrt[3]{v}}{u+v}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu-v%7D%2B%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu-v%7D-%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
Simplifying the equations gives
![\begin{cases}\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81}{182}\\\\\dfrac{4\sqrt[3]{v^4}}{u^2-v^2}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
which is to say,
![\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81\times4\sqrt[3]{v^4}}{u^2-v^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%5Ctimes4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D)
![\implies\sqrt[3]{\left(\dfrac uv\right)^4}=81](https://tex.z-dn.net/?f=%5Cimplies%5Csqrt%5B3%5D%7B%5Cleft%28%5Cdfrac%20uv%5Cright%29%5E4%7D%3D81)


Substituting this into the new system gives
![\dfrac{4\sqrt[3]{v^4}}{(\pm27v)^2-v^2}=\dfrac1{182}\implies\dfrac1{v^2}=1\implies v=\pm1](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7B%28%5Cpm27v%29%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cimplies%5Cdfrac1%7Bv%5E2%7D%3D1%5Cimplies%20v%3D%5Cpm1)

Then

(meaning two solutions are (7, 13) and (-7, -13))