It was a man named <span>Johannes Kepler. </span>
1) The equivalent resistance of two resistors in parallel is given by:

so in our problem we have

and the equivalent resistance is

2) If we have a battery of 12 V connected to the circuit, the current in the circuit will be given by Ohm's law, therefore:
Answer:
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s
Yes, it is <span>accurate to describe the physical universe as composed of only matter and energy. Some people might argue about the dark matter, but it is not yet defined properly. Different universes can be made up of different compositions but it is a fact that our universe is made of matter and energy. </span>
In general, the quantity of heat energy, Q, required to raise a mass m kg of a substance with a specific heat capacity of <span>c </span>J/(kg °C), from temperature t1 °C to t2 °C is given by:
<span>Q </span>= <span>mc(t</span><span>2 </span><span>– t</span>1<span>) joules</span>
<span>So:</span>
(t2-t1) =Q / mc
<span>As we know:
Q = 500 J </span>
<span>m = 0.4 kg</span>
<span>c = 4180 J/Kg </span>°c
<span>We can take t1 to be 0</span>°c
t2 - 0 = 500 / ( 0.4 * 4180 )
t2 - 0 = 0.30°c