Two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
<h3>What are orbitals?</h3>
Orbital is the place around nucleus where mostly the electrons are present. There are four types of orbitals are present, s, p, d, and f.
The orbitals that are formed by the mixing of these orbitals are called hybrid orbitals.
Thus, two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
Learn more about orbitals
brainly.com/question/18914648
#SPJ4
Either 175 N or 157 N depending upon how the value of 48° was measured from.
You didn't mention if the angle of 48° is from the lug wrench itself, or if it's from the normal to the lug wrench. So I'll solve for both cases and you'll need to select the desired answer.
Since we need a torque of 55 N·m to loosen the nut and our lug wrench is 0.47 m long, that means that we need 55 N·m / 0.47 m = 117 N of usefully applied force in order to loosen the nut. This figure will be used for both possible angles.
Ideally, the force will have a 0° degree difference from the normal and 100% of the force will be usefully applied. Any value greater than 0° will have the exerted force reduced by the cosine of the angle from the normal. Hence the term "cosine loss".
If the angle of 48° is from the normal to the lug wrench, the usefully applied power will be:
U = F*cos(48)
where
U = Useful force
F = Force applied
So solving for F and calculating gives:
U = F*cos(48)
U/cos(48) = F
117 N/0.669130606 = F
174.8537563 N = F
So 175 Newtons of force is required in this situation.
If the 48° is from the lug wrench itself, that means that the force is 90° - 48° = 42° from the normal. So doing the calculation again (this time from where we started plugging in values) we get
U/cos(42) = F
117/0.743144825 = F
157.4390294 = F
Or 157 Newtons is required for this case.
linear charge density of system of two line charges is given as

now as we know that electric field due to a line charge at some distance from it is given by

so here we will first find the electric field of first line charge at the position of other line charge


now as we know that

here q = charge on the line charge system at which force is required
E = electric field on that system of charge where force is required
now we can find the charge by


Now using the above formula



so force on the part of wire is F = 0.0811 N
False
Nothing has the same destiny everything has their own destiny to follow
The spring balance provides a mass measurement