Answer:Electromagnetic Energy Example One
activity: cellphones
type of electromagnetic: radio waves
description: we all use our phones to make phone calls and to send a text!
Electromagnetic Energy Example two
activity: microwave
type of electromagnetic: microwave radiation
description: The microwave radiation is absorbed by water molecules in the food which converts to heat intern heats the food do to high levels of radiation being emitted into the food!
Explanation:
i hope this helps you sorry if it doesn't
<em><u>1.car</u></em><em><u> </u></em><em><u>towing</u></em>
<em><u>2.pulling</u></em><em><u> </u></em><em><u>bucket</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>water</u></em>
<em><u>3.gym</u></em><em><u> </u></em><em><u>equipment</u></em><em><u> </u></em>
<em><u>4.crane</u></em><em><u> </u></em><em><u>machine</u></em>
<em><u>5.tug</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>war</u></em>
Answer:

at t = 0.001 we have

at t = 0.01

at t = infinity

Explanation:
As we know that they are in series so the voltage across all three will be sum of all individual voltages
so it is given as

now we will have

now we have

So we will have

at t = 0 we have
q = 0

also we know that
at t = 0 i = 0




so we have

at t = 0.001 we have

at t = 0.01

at t = infinity

Answer:
F > W * sin(α)
Explanation:
The force needed for the box to start sliding up depends on the incline (α).
The external forces acting on the box would be the weight, the normal reaction and the lifting force that is applied to make it slide up.
These forces can be decomposed on their normal and tangential (to the slide plane) components.
The weight will be split into
Wn = W * cos(α) (in normal direction)
Wt = W * sin(α) (in tangential direction)
The normal reaction will be alligned with the normal axis, and will be equal to -Wn
N = -W* cos(α) (in normal direction)
To mke the box slide up, a force must be applied, that is opposite to the tangential component of the weight and at least a little larger
F > |-W * sin(α)| (in tangential direction)
Answer:
Electric field, E = 40608.75 N/C
Explanation:
It is given that,
Mass of electrons, 
Initial speed of electron, u = 0
Final speed of electrons, 
Distance traveled, s = 6.3 cm = 0.063 m
Firstly, we will find the acceleration of the electron using third equation of motion as :



Now we will find the electric field required in the tube as :



E = 40608.75 N/C
So, the electric field required in the tube is 40608.75 N/C. Hence, this is the required solution.