Answer:
2 Newtons
Explanation:

Therefore, your mass would be 1kg and your acceleration would be 2m/s/s
Plug the numbers into the equation:

which will equal

In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass.
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were.
Ok, Rameses:
Elementary charge . . . . . 1.6 x 10⁻¹⁹ coulomb
negative on the electron
plussitive on the proton
Electron rest-mass . . . . . 9.11 x 10⁻³¹ kg
a). The force between two charges is
F = (9 x 10⁹) Q₁ Q₂ / R²
= (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²
= ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²
= 8.05 x 10⁻⁸ Newton .
b). Centripetal acceleration =
v² / r .
A = (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)
= 7.7 x 10²² m/s² .
That's an enormous acceleration ... about 7.85 x 10²¹ G's !
More than enough to cause the poor electron to lose its lunch.
It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use " F = MA "
either.
I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether F = M A .
I'm going to leave that step for you. Good luck !
Answer:

Explanation:
As we know that the position of maximum intensity on the screen is given as

here we know that
= wavelength
L = distance of the screen
d = distance between two slits
now we know that the position of 8th maximum intensity is same as that of 9th maximum on the screen
so we have

so here we have

