<span>If the force is fn, then it acting on the block, in the term of f2 and the other variables of the problems. then we assume the surface is rest on it's rigid, then the magnitude of the force is,
fn =f2 sin(?) +m g</span>
Answer:
4186 Joules
Explanation:
The specific heat capacity of a substance is defined as the amount of heat needed to raise the temperature of 1 kg of the substance by 1 Kelvin. In formula,

where
Q is the amiunt of heat needed
m = 1 kg is the mass

is the variation of temperature of the substance
For water, the specific heat capacity is
. This means that the heat energy required to raise 1 kg of water by 1 K is exactly 4186 J.
Answer:
4.2 J
Explanation:
Specific heat capacity: This is defined as the amount of a heat required to rise a unit mass of a substance through a temperature of 1 K
From specific heat capacity,
Q = cmΔt.............................. Equation 1
Where Q = amount of energy absorbed or lost, c = specific heat capacity of water, m = mass of water, Δt = Temperature rise.
Given: m = 1 g = 0.001 kg, Δt = 1 °C
Constant : c = 4200 J/kg.°C
Substitute into equation 1
Q = 0.001×4200(1)
Q = 4.2 J.
Hence the energy absorbed or lost = 4.2 J
Answer:
about 3.17647 hours
Explanation:
The appropriate relation is ...
time = distance/speed
time = (270 km)/(85 km/h) = 3 3/17 h ≈ 3.17647 h
It will take Derek about 3.17647 hours to drive the distance.