Answer:
![\dfrac{d\theta}{dt} =-0.233\ rad/s](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D%20%3D-0.233%5C%20rad%2Fs)
Explanation:
given,
length of ladder = 10 ft
let x be the distance of the bottom and y be the distance of the top of ladder.
x² + y² = 100
differentiating with respect to time we get
..............(1)
when x = 8 and y = 6 and when \dfrac{dx}{dt} = 1.4ft/s
from equation (1)
now,
![16\times 1.4 + 12\dfrac{dy}{dt} = 0](https://tex.z-dn.net/?f=16%5Ctimes%201.4%20%2B%2012%5Cdfrac%7Bdy%7D%7Bdt%7D%20%3D%200)
![\dfrac{dy}{dt} = -\dfrac{5.6}{3}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdt%7D%20%3D%20-%5Cdfrac%7B5.6%7D%7B3%7D)
let the angle between the ladders be θ
![tan\theta = \dfrac{y}{x}](https://tex.z-dn.net/?f=tan%5Ctheta%20%3D%20%5Cdfrac%7By%7D%7Bx%7D)
y = xtan θ
![\dfrac{dy}{dt} =\dfrac{dy}{dt} tan\theta + x sec^2\theta\dfrac{d\theta}{dt}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdt%7D%20%3D%5Cdfrac%7Bdy%7D%7Bdt%7D%20tan%5Ctheta%20%2B%20x%20sec%5E2%5Ctheta%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D%20)
![-\dfrac{5.6}{3} =1.4\times \dfrac{6}{8} + 8 (1+\dfrac{9}{16})\dfrac{d\theta}{dt}](https://tex.z-dn.net/?f=-%5Cdfrac%7B5.6%7D%7B3%7D%20%3D1.4%5Ctimes%20%5Cdfrac%7B6%7D%7B8%7D%20%2B%208%20%281%2B%5Cdfrac%7B9%7D%7B16%7D%29%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D)
![\dfrac{25}{2} \dfrac{d\theta}{dt} =\dfrac{-17.5}{6}](https://tex.z-dn.net/?f=%5Cdfrac%7B25%7D%7B2%7D%20%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D%20%3D%5Cdfrac%7B-17.5%7D%7B6%7D)
![\dfrac{d\theta}{dt} =-0.233\ rad/s](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D%20%3D-0.233%5C%20rad%2Fs)
Answer:
Trees grow everywhere, so we always have some
Explanation:
Wood is a renewable resource; trees can be replanted and grown to maturity in place of those that are cut down. As long as the trees are replanted at the same rate as they are cut down wood will be a renewable resource.
The precipitate is the barium sulfate, or 3) BaSO4. This is because it is a solid (as seen by the (s)), unlike the other aqueous product. The fact that it is a solid means that it is insoluble in water and therefore a precipitate.
Hope this helps!
Answer:
![R = 24.3 m](https://tex.z-dn.net/?f=R%20%3D%2024.3%20m)
Explanation:
As we know that the orbital speed is given as
![v = \sqrt{\frac{GM}{R + h}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7BGM%7D%7BR%20%2B%20h%7D%7D)
here we know that
v = 5500 m/s
![R = 4.48 \times 10^6 m](https://tex.z-dn.net/?f=R%20%3D%204.48%20%5Ctimes%2010%5E6%20m)
![h = 630 km](https://tex.z-dn.net/?f=h%20%3D%20630%20km)
now we have
![5500 = \sqrt{\frac{(6.6 \times 10^{-11})M}{4.48 \times 10^6 + 6.30\times 10^5}}](https://tex.z-dn.net/?f=5500%20%3D%20%5Csqrt%7B%5Cfrac%7B%286.6%20%5Ctimes%2010%5E%7B-11%7D%29M%7D%7B4.48%20%5Ctimes%2010%5E6%20%2B%206.30%5Ctimes%2010%5E5%7D%7D)
![M = 2.34 \times 10^24 kg](https://tex.z-dn.net/?f=M%20%3D%202.34%20%5Ctimes%2010%5E24%20kg)
now acceleration due to gravity of planet is given as
![a = \frac{GM}{R^2}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7BGM%7D%7BR%5E2%7D)
![a = \frac{(6.6 \times 10^{-11})(2.34 \times 10^{24})}{(4.48\times 10^6)^2}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B%286.6%20%5Ctimes%2010%5E%7B-11%7D%29%282.34%20%5Ctimes%2010%5E%7B24%7D%29%7D%7B%284.48%5Ctimes%2010%5E6%29%5E2%7D)
![a = 7.7 m/s^2](https://tex.z-dn.net/?f=a%20%3D%207.7%20m%2Fs%5E2)
now range of the projectile on the surface of planet is given as
![R = \frac{v^2 sin2\theta}{g}](https://tex.z-dn.net/?f=R%20%3D%20%5Cfrac%7Bv%5E2%20sin2%5Ctheta%7D%7Bg%7D)
![R = \frac{14.6^2 sin(2\times 30.8)}{7.7}](https://tex.z-dn.net/?f=R%20%3D%20%5Cfrac%7B14.6%5E2%20sin%282%5Ctimes%2030.8%29%7D%7B7.7%7D)
![R = 24.3 m](https://tex.z-dn.net/?f=R%20%3D%2024.3%20m)
Answer:
![2.62898\times 10^{-6}\ C/m^3](https://tex.z-dn.net/?f=2.62898%5Ctimes%2010%5E%7B-6%7D%5C%20C%2Fm%5E3)
![1979.99974\ N/C](https://tex.z-dn.net/?f=1979.99974%5C%20N%2FC)
Explanation:
k = Coulomb constant = ![8.99\times 10^{9}\ Nm^2/C^2](https://tex.z-dn.net/?f=8.99%5Ctimes%2010%5E%7B9%7D%5C%20Nm%5E2%2FC%5E2)
Q = Charge
r = Distance = 8 cm
R = Radius = 4 cm
Electric field is given by
![E=\dfrac{kQ}{r^2}\\\Rightarrow Q=\dfrac{Er^2}{k}\\\Rightarrow E=\dfrac{990\times 0.08^2}{8.99\times 10^{9}}\\\Rightarrow Q=7.04783\times 10^{-10}\ C](https://tex.z-dn.net/?f=E%3D%5Cdfrac%7BkQ%7D%7Br%5E2%7D%5C%5C%5CRightarrow%20Q%3D%5Cdfrac%7BEr%5E2%7D%7Bk%7D%5C%5C%5CRightarrow%20E%3D%5Cdfrac%7B990%5Ctimes%200.08%5E2%7D%7B8.99%5Ctimes%2010%5E%7B9%7D%7D%5C%5C%5CRightarrow%20Q%3D7.04783%5Ctimes%2010%5E%7B-10%7D%5C%20C)
Volume charge density is given by
![\sigma=\dfrac{Q}{\dfrac{4}{3}\pi R^3}\\\Rightarrow \sigma=\dfrac{7.04783\times 10^{-10}}{\dfrac{4}{3}\pi (0.04)^3}\\\Rightarrow \sigma=2.62898\times 10^{-6}\ C/m^3](https://tex.z-dn.net/?f=%5Csigma%3D%5Cdfrac%7BQ%7D%7B%5Cdfrac%7B4%7D%7B3%7D%5Cpi%20R%5E3%7D%5C%5C%5CRightarrow%20%5Csigma%3D%5Cdfrac%7B7.04783%5Ctimes%2010%5E%7B-10%7D%7D%7B%5Cdfrac%7B4%7D%7B3%7D%5Cpi%20%280.04%29%5E3%7D%5C%5C%5CRightarrow%20%5Csigma%3D2.62898%5Ctimes%2010%5E%7B-6%7D%5C%20C%2Fm%5E3)
The volume charge density for the sphere is ![2.62898\times 10^{-6}\ C/m^3](https://tex.z-dn.net/?f=2.62898%5Ctimes%2010%5E%7B-6%7D%5C%20C%2Fm%5E3)
![E=\dfrac{kQr}{R^3}\\\Rightarrow E=\dfrac{8.99\times 10^9\times 7.04783\times 10^{-10}\times 0.02}{0.04^3}\\\Rightarrow E=1979.99974\ N/C](https://tex.z-dn.net/?f=E%3D%5Cdfrac%7BkQr%7D%7BR%5E3%7D%5C%5C%5CRightarrow%20E%3D%5Cdfrac%7B8.99%5Ctimes%2010%5E9%5Ctimes%207.04783%5Ctimes%2010%5E%7B-10%7D%5Ctimes%200.02%7D%7B0.04%5E3%7D%5C%5C%5CRightarrow%20E%3D1979.99974%5C%20N%2FC)
The magnitude of the electric field is ![1979.99974\ N/C](https://tex.z-dn.net/?f=1979.99974%5C%20N%2FC)