Answer:
1. 8437500 N
2. The force between the two charges is attractive.
Explanation:
1. Determination of the force between the two charges.
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
Distance apart (r) = 80 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 2 × 3 / 80²
F = 5.4×10¹⁰ / 6400
F = 8437500 N
Thus, the force of attraction between the two charges is 8437500 N
2. From the question given, the charges are:
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
We understood that like charges repels while unlike charges attract. Since the two charges (i.e –2 C and 3 C) has opposite signs, it means they will attract each other.
Thus the force between them is attractive.
Answer:

Explanation:
First, let's find the voltage through the resistor using ohm's law:

AC power as function of time can be calculated as:
(1)
Where:

Because of the problem doesn't give us additional information, let's assume:

Evaluating the equation (1) in t=3600 (Because 1h equal to 3600s):

Answer:
1.24 m/s
Explanation:
Metric unit conversion:
9.25 mm = 0.00925 m
5 mm = 0.005 m
The volume rate that flow through the single pipe is

This volume rate should be constant and divided into the 4 narrower pipes, each of them would have a volume rate of

So the flow speed of each of the narrower pipe is:

The equation that most accurately represents the model of cellular respiration is: C6H12O6 (sugar) + 6O2 (oxygen) = 6CO2 (carbon dioxide) + 6H2O (water) + energy.
<h3>
CELLULAR RESPIRATION:</h3>
Cellular respiration is the process whereby living organisms obtain energy by breaking down food molecules in their cells.
The process of cellular respiration breaks down sugar molecules (glucose) in the presence of oxygen to produce carbon dioxide and water as products, as well as energy in form of ATP.
Therefore, the equation that most accurately represents the model of cellular respiration is: C6H12O6 (sugar) + 6O2 (oxygen) = 6CO2 (carbon dioxide) + 6H2O (water) + energy.
Learn more about cellular respiration at: brainly.com/question/12671790?referrer=searchResults
Answer:
The speed of the boxes are 1 m/s.
Explanation:
Given that,
Mass of box = 1 kg
Mass of another box = 2 kg
Suppose 1 kg box moves with 3 m/s speed.
We need to calculate the speed of the boxes
Using formula of conservation of momentum

Where, u = initial velocity
v = final velocity
Put the value into the formula



Hence, The speed of the boxes are 1 m/s.