Answer:
B
Step-by-step explanation:
The value of the 4 in 14.8 is 10 times the value of the 4 in 3.46.
From the identity:


the inverse of f is g such that f(g(x))=x,
we must find g(x), such that
![\frac{1}{cos[g(x)]}=x](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bcos%5Bg%28x%29%5D%7D%3Dx%20)
thus,
![cos[g(x)]= \frac{1}{x}](https://tex.z-dn.net/?f=cos%5Bg%28x%29%5D%3D%20%5Cfrac%7B1%7D%7Bx%7D%20)

Answer: b. g(x)=cos^-1(1/x)
2X^2+22x+318=1270
2x^2+22x-952=0
x^2+11x-476=0
(x+28)(x-17)=0
x=17
Answer:
Sorry this is late and I think this is right.
They are both parallel, they have the same slope, and do <em>not </em>intersect. If you were to draw a slope out for it, you would find this to be true.
For example: Say the question called for you to explain why there aren't any solutions to these system of inequalities:
<em>y < - 1/2x -3</em>
<em>y > 1/2x + 2</em>
<em>y= -x/2 -3</em> and <em>y= -x/2 + 2 </em>have the same exact slope, are parallel, and never intersect. The first line is 5 units below the second line when x = 0. Because the lines are parallel, it is always below the second line. The solutions of y < - x/2 -3 are the points in the plane below the first line. The solutions of y > 1/2 + 2 are points above the second line.
I hope this helps you. Good luck on whatever you're working on and stay safe! Please let me know if this helped you or didn't.
p=36
because 15 is 3 times 5 so just multiply the perimeter