Great question. Albert Einstein proved that light acts as both a particle and a wave in his 1905 paper. This is called wave-particle duality.
With quantum mechanics, it is easy to prove that light behaves as both a particle and a wave.
When UV light hits a metal surface, it causes an emission of electrons. This "photoelectric effect" proves how light behaves.
Answer:
2420 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 22.9 N
Angle (θ) = 35°
Distance (d) = 129 m
Workdone (Wd) =?
The work done can be obtained by using the following formula:
Wd = Fd × Cos θ
Wd = 22.9 × 129 × Cos 35
Wd = 22.9 × 129 × 0.8192
Wd ≈ 2420 J
Thus, the workdone is 2420 J.
Incandescent lights get hot very quickly and therefore can easily burn u or catch fire
Answer:
a)n= 3.125 x
electrons.
b)J= 1.515 x
A/m²
c)
=1.114 x
m/s
d) see explanation
Explanation:
Current 'I' = 5A =>5C/s
diameter 'd'= 2.05 x
m
radius 'r' = d/2 => 1.025 x
m
no. of electrons 'n'= 8.5 x
a) the amount of electrons pass through the light bulb each second can be determined by:
I= Q/t
Q= I x t => 5 x 1
Q= 5C
As we know that: Q= ne
where e is the charge of electron i.e 1.6 x
C
n= Q/e => 5/ 1.6 x 
n= 3.125 x
electrons.
b) the current density 'J' in the wire is given by
J= I/A => I/πr²
J= 5 / (3.14 x (1.025x
)²)
J= 1.515 x
A/m²
c) The typical speed'
' of an electron is given by:
=
=1.515 x
/ 8.5 x
x |-1.6 x
|
=1.114 x
m/s
d) According to these equations,
J= I/A
=
=
If you were to use wire of twice the diameter, the current density and drift speed will change
Increase in the diameter increase the cross sectional area and decreases the current density as it has inverse relation.
Also drift velocity will decrease as it is inversely proportional to the area
<span>ADP has 2 phosphate groups, and when another phosphate group is added it becomes ATP. </span><span />