Answer:
Explanation:
PE = mgh = 60(9.8)(2.0) = 1176 J
The final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =

- Final velocity of the second astronaut, =

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

if v₂ > v₁, then
, to conserve the linear momentum.
Thus, the final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291
It's impossible to describe WHERE a place is without mentioning ANOTHER place.
... Across the street from -- the bank.
... Next door to -- my house.
... 30 miles west of -- Chicago.
... Up above -- the tree.
... Two days ride out of -- Tulsa.
... Halfway home from -- school.
... Twice as far from Earth as -- the moon is.
... The first seat in -- the second row.
... Behind -- the dog's left ear.
... At the bottom of -- the pool.
... On the tip of -- my tongue.
... In the front seat of -- the car.
... I saw you in -- my dream.
... You're always on -- my mind.
The question is trying to get you to realize that to get from a reference point to a certain position, you have to know
How far
and
In what direction.
. . . . . not zero .
Note: "... unbalanced" would be a terrible answer.
<span>Drought
....................</span>