The magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
To find the answer, we need to know about the magnetic field inside the solenoid.
<h3>What's the expression of magnetic field inside a solenoid?</h3>
- Mathematically, the expression of magnetic field inside the solenoid= μ₀×n×I
- n = no. of turns per unit length and I = current through the solenoid
<h3>What's is the magnetic field inside the solenoid here?</h3>
- Here, n = 290/32cm or 290/0.32 = 906
I= 0.3 A
- So, Magnetic field= 4π×10^(-7)×906×0.3 = 3.4×10^(-4) T.
Thus, we can conclude that the magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
Learn more about the magnetic field inside the solenoid here:
brainly.com/question/22814970
#SPJ4
First change km/ s into m/s, then use the formula
Lambda = velocity/ frequency
First,

where
is density,
is mass, and
is volume. We can compute the volume of the roll:


When the roll is unfurled, the aluminum will be a rectangular box (a very thin one), so its volume will be the product of the given area and its thickness
. Note that we're assuming the given area is not the actual total surface area of the aluminum box, but just the area of the largest face (i.e. the area of one side of the unrolled sheet of aluminum).
So we have

where
is the given area, so


If we're taking significant digits into account, the volume we found would have been
, in turn making the thickness
.
Answer:
It is because it cannot be used time again and again.
Answer:
0 N
Explanation:
Applying,
F = qvBsin∅................. Equation 1
Where F = Force on the charge, q = charge, v = Velocity, B = magnetic charge, ∅ = angle between the velocity and the magnetic field.
From the question,
Given: q = 4.88×10⁻⁶ C, v = 265 m/s, B = 0.0579 T, ∅ = 0°
Substitute these values into equation 1
F = ( 4.88×10⁻⁶)(265)(0.0579)(sin0)
Since sin0° = 0,
Therefore,
F = 0 N