Answer:
So lift will be 30.19632 N
Explanation:
We have given area of the wing 
We know that density of air 
Speed at top surface
and speed at bottom surface 
According to Bernoulli's principle force is given by
The Mercury's mass for the given acceleration due to gravity is 0.3152 x 10²⁴ kg.
The ratio of the calculated and accepted value of the Mercury's mass is 0.95.
<h3>What is mass?</h3>
Mass is the amount of matter present in the object.
The mass of the object is always constant, anywhere it is on the Earth or Moon or any other planet.
Given is the acceleration due to gravity of Mercury planet at North pole is g = 3.698 m/s² and the radius of Mercury planet is 2440 km.
The acceleration due to gravity is related with mass as
g = GM/R²
Substitute the values, we have
3.698 = 6.67 x 10⁻¹¹ x M/(2440 x1000)³
M = 2.2016 x 10¹³ / 6.67 x 10⁻¹¹
M = 0.3152 x 10²⁴ kg
Thus, the mercury's mass is 0.3152 x 10²⁴ kg.
(b) Accepted value of Mercury's mass is 3.301 x 10²³ kg
Ratio of the value of mass calculated and accepted is
Mcalc/M accep = 0.3152 x 10²⁴ kg / 3.301 x 10²³ kg
= 0.95
Thus, the ratio is 0.95
Learn more about mass.
brainly.com/question/19694949
#SPJ1
<span>i think the answer is : Bend the arm at the elbow with the back straight </span>
<h2>
Option A is the correct answer.</h2>
Explanation:
A 10-ω resistor and a 30-ω resistor are connected in series across a 100-V battery
Total resistance = 10 + 30 = 40 ω
We have
Voltage = Current x resistance
100 = I x 40
I = 2.5 A
In series current in all the resistors are same, that is 2.5 A
Voltage in 10ω resistor, V = I x 10 = 2.5 x 10 = 25 V
In parallel connection potential in all the resistors are same.
Voltage in 10ω resistor, V = 100 V
The ratio of the potential difference across the 10-ω resistor in the series combination to that of the 10-ω resistance connected in parallel = 25/100 = 1/4
Option A is the correct answer.
Answer:
Explanation:
Let the specific heat of material be s
heat lost by material = m₁ s (T 1 - T ) , (T 1 - T ) is fall in temp , m₁ is mass of material
= .45 x s x (91 - 31.4 )
= 26.82 s
Heat gained by water
= m₂ cw (T2 - T )
1.3 x 4186 x ( 31.4 - 23 )
heat lost = heat gained
m₂ cw (T2 - T ) = m₁ s (T 1 - T )
1.3 x 4186 x ( 31.4 - 23 ) = .45 x s x (91 - 31.4 )
45711.12 = 26.82 s
s = 1704.36