Answer:
Different organelles play different roles in the cell — for instance, mitochondria generate energy from food molecules; lysosomes break down and recycle organelles and macromolecules; and the endoplasmic reticulum helps build membranes and transport proteins throughout the cell.
Explanation:
Hopefully this helped!
The power that the light is able to utilize out of the supply is only 0.089 of the given.
Power utilized = (0.089)(22 W)
= 1.958 W
= 1.958 J/s
The energy required in this item is the product of the power utilized and the time. That is,
Energy = (1.958 J/s)(1 s) = 1.958 J
Thus, the light energy that the bulb is able to produce is approximately 1.958 J.
Answer:
The time it can operate between chargins in minutes is

Explanation:
Given:
,
, 
a). The rotational kinetic energy






b). The power average 0.8kW un range time can be find

Solve to t'



Answer:
x = 0.6034 m
Explanation:
Given
L = 5 m
Wplank = 225 N
Wman = 522 N
d = 1.1 m
x = ?
We have to take sum of torques about the right support point. If the board is just about to tip, the normal force from the left support will be going to zero. So the only torques come from the weight of the plank and the weight of the man.
∑τ = 0 ⇒ τ₁ + τ₂ = 0
Torque come from the weight of the plank = τ₁
Torque come from the weight of the man = τ₂
⇒ τ₁ = + (5 - 1.1)*(225/5)*((5 - 1.1)/2) - (1.1)*(225/5)*((1.1)/2) = 315 N-m (counterclockwise)
⇒ τ₂ = Wman*x = 522 N*x (clockwise)
then
τ₁ + τ₂ = (315 N-m) + (- 522 N*x) = 0
⇒ x = 0.6034 m
Answer:
v = 10 m/s
Explanation:
Let's assume the wheel does not slip as it accelerates.
Energy theory is more straightforward than kinematics in my opinion.
Work done on the wheel
W = Fd = 45(12) = 540 J
Some is converted to potential energy
PE = mgh = 4(9.8)12sin30 = 235.2 J
As there is no friction mentioned, the remainder is kinetic energy
KE = 540 - 235.2 = 304.8 J
KE = ½mv² + ½Iω²
ω = v/R
KE = ½mv² + ½I(v/R)² = ½(m + I/R²)v²
v = √(2KE / (m + I/R²))
v = √(2(304.8) / (4 + 0.5/0.5²)) = √101.6
v = 10.07968...