Frequency, f = v / λ
f = 2.998 * 10⁸ / 3.55*10⁻⁸
f = 8.445 * 10¹⁵ Hz.
Answer:
While both handwashing and hand sanitizing are good hygiene practices, each has its ... The difference between soaps and detergents lies in their ingredients and how they are made. ... Before handling clean equipment and serving utensils;; When changing tasks and switching ... Do not wash or rub it off on your clothes.
Explanation:
Answer:
30 g of magnesium would be combined with 20 g of oxygen. The law used solving this problem is the Lavoisier Law of conservation of mass.
Explanation:
If 60 g of magnesium combines with 40 g of oxygen to make 100 g of magnesium oxide, then 30 g of magnesium will combine with 20 g of oxygen to make 50 g of magnesium oxide.
This happens because in a chemical reaction there is no creation or descruction of atoms, only a rearrangement. Therefore, the mass of reactants should be equal to the mass of products.
The following equation represents the proportions of the substances:
Mg + 1/2O₂ → MgO
<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).