1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fittoniya [83]
3 years ago
5

Members of the student council have been asked by their

Engineering
1 answer:
kobusy [5.1K]3 years ago
7 0

Answer:

How to plan? Achievable goals. Expected timetable. Slogan. How to execute the presentation. How to attract the audience. Et cetera

You might be interested in
A vacuum pump is used to drain a basement of 20 °C water (with a density of 998 kg/m3 ). The vapor pressure of water at this tem
lord [1]

Answer:

The maximum theoretical height that the pump can be placed above liquid level is \Delta h=9.975\,m

Explanation:

To pump the water, we need to avoid cavitation. Cavitation is a phenomenon in which liquid experiences a phase transition into the vapour phase because pressure drops below the liquid's vapour pressure at that temperature.  As a liquid is pumped upwards, it's pressure drops. to see why, let's look at Bernoulli's equation:

\frac{\Delta P}{\rho}+g\, \Delta h +\frac{1}{2}  \Delta v^2 =0

(\rho stands here for density, h for height)

Now, we are assuming that there aren't friction losses here. If we assume further that the fluid is pumped out at a very small rate, the velocity term would be negligible, and we get:

\frac{\Delta P}{\rho}+g\, \Delta h  =0

\Delta P= -g\, \rho\, \Delta h

This means that pressure drop is proportional to the suction lift's height.

We want the pressure drop to be small enough for the fluid's pressure to be always above vapour pressure, in the extreme the fluid's pressure will be almost equal to vapour pressure.

That means:

\Delta P = 2.34\,kPa- 100 \,kPa = -97.66 \, kPa\\

We insert that into our last equation and get:

\frac{ \Delta P}{ -g\, \rho\,}= \Delta h\\\Delta h=\frac{97.66 \, kPa}{998 kg/m^3 \, \, 9.81 m/s^2} \\\Delta h=9.975\,m

And that is the absolute highest height that the pump could bear. This, assuming that there isn't friction on the suction pipe's walls, in reality the height might be much less, depending on the system's pipes and pump.

8 0
4 years ago
A circular section of material is tested. The original specimen is 200 mm long and has a diameter of 13 mm. When loaded to its p
n200080 [17]

Answer:

modulus of elasticity = 100.45 Gpa,

proportional limit = 150.68 N/mm^2.

Explanation:

We are given the following parameters or data in the question as;

=> "The original specimen = 200 mm long and has a diameter of 13 mm."

=> "When loaded to its proportional limit, the specimen elongates by 0.3 mm."

=> " The total axial load is 20 kN"

Step one: Calculate the area

Area = π/ 4 × c^2.

Area = π/ 4 × 13^2 = 132.73 mm^2.

Step two: determine the stress induced.

stress induced = load/ area= 20 × 1000/132.73 = 150.68 N/mm^2.

Step three: determine the strain rate:

The strain rate = change in length/original length = 0.3/ 200 = 0.0015.

Step four: determine the modulus of elasticity.

modulus of elasticity = stress/strain = 150.68/0.0015 = 100453.33 N/mm^2 = 100.45 Gpa.

Step five: determine the proportional limit.

proportional limit = 20 × 1000/132.73 = 150.68 N/mm^2.

7 0
3 years ago
Read 2 more answers
This manometer is used to measure the difference in water level between the two tanks.
SpyIntel [72]

Answer:

a) True

Explanation:

hope it helps u

3 0
3 years ago
the coil polarity in a waste spark system is determined by the direction in which the coil is wound (left hand rule for conventi
zaharov [31]
The coil polarity in a waste-spark system is determined by the direction in which the coil is wound (left-hand rule for conventional current flow)and can’t be changed. For example, if a V-8 engine has a firing order of 18436572 and the number 1 cylinder is on compression, which cylinder will be on the exhaust stroke?
3 0
2 years ago
1. Consider a city of 10 square kilometers. A macro cellular system design divides the city up into square cells of 1 square kil
kakasveta [241]

Answer:

a) n = 1000\,users, b)\Delta t_{min} = \frac{1}{30}\,h, \Delta t_{max} = \frac{\sqrt{2} }{30}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h, c) n = 10000000\,users, \Delta t_{min} = \frac{1}{3000}\,h, \Delta t_{max} = \frac{\sqrt{2} }{3000}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

Explanation:

a) The total number of users that can be accomodated in the system is:

n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )

n = 1000\,users

b) The length of the side of each cell is:

l = \sqrt{1\,km^{2}}

l = 1\,km

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{30}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{30}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h

c) The total number of users that can be accomodated in the system is:

n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )

n = 10000000\,users

The length of each side of the cell is:

l = \sqrt{100\,m^{2}}

l = 10\,m

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{3000}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

8 0
4 years ago
Other questions:
  • Why is it a good idea to lock your doors while driving?<br> WRITER
    10·1 answer
  • A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of ins
    6·1 answer
  • What is an isentropic process?
    7·1 answer
  • What is the t max for a carbon steel heater tube?
    8·1 answer
  • You need to bake 2 dozen chocolate chip
    12·1 answer
  • 1. advantages of 2 pulley system
    13·1 answer
  • Compare the temperature dependence of Nabarro-Herring and Coble creep. Which is more temperature-sensitive
    15·1 answer
  • A spherical metal ball of radius r_0 is heated in an oven to a temperature of T_1 throughout and is then taken out of the oven a
    6·1 answer
  • How the LED (light emitting diode) works?​
    8·2 answers
  • Who here likes to play project gotham racing?<br> will mark brainlyest
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!