1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
4 years ago
6

A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of ins

ulating materials. The inner and outer radii of the sphere are 0.18 and 0.21 m, respectively, and testing is done under steady-state conditions with the inner surface of the aluminum maintained at 250°C. In a particular test, a spherical shell of insulation is cast on the outer surface of the sphere to a thickness of 0.15 m. The system is in a room for which the air temperature is 20°C and the convection coefficient at the outer surface of the insulation is 30 W/m2 ⋅ K. If 80 W are dissipated by the heater under steady-state conditions, what is the thermal conductivity of the insulation?
Engineering
1 answer:
Stella [2.4K]4 years ago
7 0

Answer:

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

Explanation:

Generally, thermal resistance for conduction heat transfer in a sphere.

R_{cond} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi K}}  

Where R_{cond} is the thermal resistance for conduction, K is the thermal conductivity of the material, r_{i} is the inner radius of the sphere, and r_{o} is the outer radius of the sphere.

The surface area of sphere, A_{s} is given by

A_{s}=4\pi {r^2}

For aluminum sphere, the thermal resistance for conductive heat transfer is given by

Calculate the thermal resistance for conductive heat transfer through the aluminum sphere.

R_{cond,s{\rm{ - 1}}} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}}

Where K_{Al} is aluminum’s thermal conductivity at T_{s}

Thermal resistance for conductive heat transfer through the insulation.

R_{cond,1{\rm{ - 2}}} = \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}}

Thermal resistance for convection is given by

R_{conv} = \frac{1}{{hA}}

Where h is convective heat transfer coefficient, R_{conv} is thermal resistance for convection and A is the cross-sectional area normal to the direction of flow of heat energy

Thermal resistance for convective heat transfer in-between the outer surface of the insulation and the ambient air.

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h{A_s}}}

Where h represents convective heat transfer coefficient at the outer surface of the insulation. Since A_{s} is already defined, substituting it into the above formula yields

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h\left( {4\pi {r^2}} \right)}}

To obtain radial distance of the outer surface of the insulation from the center of the sphere.

r = r_{o} + t where t is thickness of insulation

r=0.21+0.15=0.36m

Total thermal resistance

R_{eq} = {R_{cond,s{\rm{ - 1}}}} + {R_{cond,1{\rm{ - 2}}}} +{R_{conv,2{\rm{ - }}\infty }}

Where R_{eq} is total thermal resistance

R_{eq} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}

Consider the thermal conductivity of aluminum at temperature T_{s} as 234W/m.K

Rate of heat transfer for the given process

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{{R_{eq}}}}

Where \dot Q_{s - \infty }} is the steady state heat transfer rate in-between the inner surface of the sphere and the ambient air.

Substituting \left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right) for R_{eq} we obtain

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{\left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right)}}

\begin{array}{l}\\80{\rm{ W}} = \frac{{250{\rm{ }}^\circ {\rm{C}} - 20{\rm{ }}^\circ {\rm{C}}}}{{\left( {\frac{{\left( {\frac{1}{{0.18{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.21{\rm{ m}}}}} \right)}}{{4\pi \left( {234{\rm{ W/m}} \cdot {\rm{K}}} \right)}} + \frac{1}{{30{\rm{ W/}}{{\rm{m}}^2} \cdot {\rm{K}}\left( {4\pi {{\left( {0.36{\rm{ m}}} \right)}^2}} \right)}}\frac{{\left( {\frac{1}{{0.21{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.36{\rm{ m}}}}} \right)}}{{4\pi {K_{ins}}}} + } \right)}}\\\\80{\rm{ W}}\left( {{\rm{0}}{\rm{0.020737 K/W}} + \frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}}} \right) = 230{\rm{ K}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = \frac{{230{\rm{ K}}}}{{80{\rm{ W}}}} - {\rm{0}}{\rm{0.020737 K/W}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = {\rm{2}}{\rm{.854263 K/W}}\\\end{array}

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

You might be interested in
A mass weighing 22 lb stretches a spring 4.5 in. The mass is also attached to a damper with Y coefficient . Determine the value
Dominik [7]

Answer:

Cc= 12.7 lb.sec/ft

Explanation:

Given that

m = 22 lb

g= 32 ft/s²

m = \dfrac{22}{32}=0.6875\ s^2/ft

x= 4.5 in

1 in = 0.083 ft

x= 0.375 ft

Spring constant ,K

K=\dfrac{m}{x}=\dfrac{22}{0.375}

K= 58.66  lb/ft

The damper coefficient for critically damped system

C_c=2\sqrt{mK}

C_c=2\sqrt{0.6875\times 58.66}

Cc= 12.7 lb.sec/ft

5 0
3 years ago
Machine movement can be divided into what two main categories?
pishuonlain [190]

Answer:

motion and power

Explanation:

8 0
4 years ago
Read 2 more answers
Write a iterative function that finds the n-th integer of the Fibonacci sequence. Then build a minimal program (main function) t
Natasha2012 [34]

Answer:

Codes for each of the problems are explained below

Explanation:

PROBLEM 1 IN C++:

#include<iostream>

using namespace std;

//fib function that calculate nth integer of the fibonacci sequence.

void fib(int n){

  // l and r inital fibonacci values for n=1 and n=2;

  int l=1,r=1,c;

 

  //if n==1 or n==2 then print 1.

  if(n==1 || n==2){

      cout << 1;

      return;

  }

  //for loop runs n-2 times and calculates nth integer of fibonacci sequence.

  for(int i=0;i<n-2;i++){

      c=l+r;

      l=r;

      r=c;

      cout << "(" << i << "," << c << ") ";

  }

  //prints nth integer of the fibonacci sequence stored in c.

  cout << "\n" << c;

}

int main(){

  int n; //declared variable n

  cin >> n; //inputs n to find nth integer of the fibonacci sequence.

  fib(n);//calls function fib to calculate and print fibonacci number.

}

PROBLEM 2 IN PYTHON:

def fib(n):

   print("fib({})".format(n), end=' ')

   if n <= 1:

       return n

   else:

       return fib(n - 1) + fib(n - 2)

if __name__ == '__main__':

   n = int(input())

   result = fib(n)

   print()

   print(result)

7 0
3 years ago
Read 2 more answers
Identify one of the advantages of 3d modeling?
Naddik [55]

Answer:

Hello Adam here! (UWU)

Explanation:

The advantages of 3D modeling for designers is not limited to productivity and coordination, it is an excellent communication tool for both the designer and end user. 3D models can help spark important conversations during the design phase and potentially avoid costly construction mishaps.

Happy to Help! (>.O)

6 0
4 years ago
An airline ticket counter forecasts that 220 people per hour will need to check in. It takes an average of 2 minutes to service
Nadusha1986 [10]

A) Number of agents required to achieve a wait time of 10 minutes or less = 8 agents

B) The number of agents required on duty to reduce cost = 9 agents

<u>Given data : </u>

Arrival rate of customers ( β ) = 220 per hour

Service rate ( mu ) = 60 minutes / 2 minutes = 30 customer per hour

utilization ( rho ) = 220 / 30 ≈ 7

at least 8 server personnel are required for stability of the queue

A<u>) Determine the number of agents required to achieve a wait time of 10 minutes or less per customer</u>

waiting time = 10 - 2 = 8 minutes

number of customers waiting ( ∝ ) = 7 and required server = 8

assuming   Lq = 5.2266

Hence the waiting time in line = Lq / arrival rate

                                                  = 5.2266 / 220 = 0.0238 hour

                                                  = 0.0238 * 60 = 1.428 minutes

Since the waiting time ( 1.428 minutes ) is less than the original waiting time ( 2 minutes ) the number of agents that will achieve a wait time of 10 minutes or less is = 8 agents

<u>B) Determine the number of</u><u> ticket agents</u><u> that should be on duty to minimize cost </u>

salary of ticket agent = £12 per hour

cost of customer waiting in queue = £5 per hour per customer

<em> </em><u>i) When 8 agents are used </u>

waiting time of customers = 0.0238 * 220 = 5.236

waiting cost for customers = 5.236 * 5 = £26.18

employee cost = 8 * 12 = £96

∴ Total cost = 96 + 26.18

                    = £ 122.18

<u>ii) When 9 agents are used </u>

waiting time for customers = 0.0074 * 220 = 1.628

Wq = 1.6367 / 220 = 0.0074

waiting cost for customers = 1.6367 * 5 = £ 8.1835

assuming Lq = 1.6367

employee cost = 9 * 12 = £ 108

∴ Total cost = 108 + 8.1835 = £ 116.18

From the calculations in ( i ) and ( ii ) the Ideal number of ticket agents that should be on duty to minimize cost should be 9 agents.

Hence we can conclude that A) Number of agents required to achieve a wait time of 10 minutes or less = 8 agents and The number of agents required on duty to reduce cost = 9 agents.

Learn more about cost reduction : brainly.com/question/14115944

6 0
3 years ago
Other questions:
  • You could be sued if you injure someone while rescuing them if...
    11·2 answers
  • The Hubble Space Telescope is an optical imaging telescope with extremely good angular resolution. Someone discovers an object t
    13·1 answer
  • What drives up the cost of consumables?
    6·1 answer
  • A civil engineer is likely to fit in which of the Holland occupational codes?
    14·2 answers
  • Engineering practices include which of the following? Select all that apply.
    10·1 answer
  • The cylinder C is being lifted using the cable and pulley system shown.
    8·1 answer
  • Pointttttttttttttssssssssssss
    12·1 answer
  • ____________ is the organization that oversees environmental compliance.
    14·1 answer
  • Technician A that shielding gas nozzles may have different shapes. Technician B says that gelding gas nozzles is attached to the
    8·1 answer
  • In the case of a collision causing property damage, injury, or death, you are required to ____
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!