1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
3 years ago
6

A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of ins

ulating materials. The inner and outer radii of the sphere are 0.18 and 0.21 m, respectively, and testing is done under steady-state conditions with the inner surface of the aluminum maintained at 250°C. In a particular test, a spherical shell of insulation is cast on the outer surface of the sphere to a thickness of 0.15 m. The system is in a room for which the air temperature is 20°C and the convection coefficient at the outer surface of the insulation is 30 W/m2 ⋅ K. If 80 W are dissipated by the heater under steady-state conditions, what is the thermal conductivity of the insulation?
Engineering
1 answer:
Stella [2.4K]3 years ago
7 0

Answer:

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

Explanation:

Generally, thermal resistance for conduction heat transfer in a sphere.

R_{cond} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi K}}  

Where R_{cond} is the thermal resistance for conduction, K is the thermal conductivity of the material, r_{i} is the inner radius of the sphere, and r_{o} is the outer radius of the sphere.

The surface area of sphere, A_{s} is given by

A_{s}=4\pi {r^2}

For aluminum sphere, the thermal resistance for conductive heat transfer is given by

Calculate the thermal resistance for conductive heat transfer through the aluminum sphere.

R_{cond,s{\rm{ - 1}}} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}}

Where K_{Al} is aluminum’s thermal conductivity at T_{s}

Thermal resistance for conductive heat transfer through the insulation.

R_{cond,1{\rm{ - 2}}} = \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}}

Thermal resistance for convection is given by

R_{conv} = \frac{1}{{hA}}

Where h is convective heat transfer coefficient, R_{conv} is thermal resistance for convection and A is the cross-sectional area normal to the direction of flow of heat energy

Thermal resistance for convective heat transfer in-between the outer surface of the insulation and the ambient air.

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h{A_s}}}

Where h represents convective heat transfer coefficient at the outer surface of the insulation. Since A_{s} is already defined, substituting it into the above formula yields

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h\left( {4\pi {r^2}} \right)}}

To obtain radial distance of the outer surface of the insulation from the center of the sphere.

r = r_{o} + t where t is thickness of insulation

r=0.21+0.15=0.36m

Total thermal resistance

R_{eq} = {R_{cond,s{\rm{ - 1}}}} + {R_{cond,1{\rm{ - 2}}}} +{R_{conv,2{\rm{ - }}\infty }}

Where R_{eq} is total thermal resistance

R_{eq} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}

Consider the thermal conductivity of aluminum at temperature T_{s} as 234W/m.K

Rate of heat transfer for the given process

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{{R_{eq}}}}

Where \dot Q_{s - \infty }} is the steady state heat transfer rate in-between the inner surface of the sphere and the ambient air.

Substituting \left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right) for R_{eq} we obtain

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{\left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right)}}

\begin{array}{l}\\80{\rm{ W}} = \frac{{250{\rm{ }}^\circ {\rm{C}} - 20{\rm{ }}^\circ {\rm{C}}}}{{\left( {\frac{{\left( {\frac{1}{{0.18{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.21{\rm{ m}}}}} \right)}}{{4\pi \left( {234{\rm{ W/m}} \cdot {\rm{K}}} \right)}} + \frac{1}{{30{\rm{ W/}}{{\rm{m}}^2} \cdot {\rm{K}}\left( {4\pi {{\left( {0.36{\rm{ m}}} \right)}^2}} \right)}}\frac{{\left( {\frac{1}{{0.21{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.36{\rm{ m}}}}} \right)}}{{4\pi {K_{ins}}}} + } \right)}}\\\\80{\rm{ W}}\left( {{\rm{0}}{\rm{0.020737 K/W}} + \frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}}} \right) = 230{\rm{ K}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = \frac{{230{\rm{ K}}}}{{80{\rm{ W}}}} - {\rm{0}}{\rm{0.020737 K/W}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = {\rm{2}}{\rm{.854263 K/W}}\\\end{array}

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

You might be interested in
Special considerations must be given to systems using liquid hydrogen for fuel because of: A. Liquid hydrogen's low density B. L
vitfil [10]

Answer:

D.All of the above

Explanation:

Properties of hydrogen:

1.It is lighter than air.It has density about 0.089 g/L.

2.Hydrogen  rapidly change from liquid state to gas,so special protection is required to protect it.

3.It is highly flammable gas.

4.Liquid form of hydrogen exits at -432 F .This is very low temperature so special protection requires to keep it in liquid form.          

6 0
2 years ago
Which of the following statements most accurately describes the circuit?
Fofino [41]

Answer:

D

Explanation:

All of the above.

7 0
3 years ago
Giving free brainlist first 1
kaheart [24]

Hi! Hope you're having a great day!

8 0
2 years ago
What process does a professional use to find an object’s position with respect to the camera?
shtirl [24]

Answer:

"D

Explanation:

5 0
3 years ago
Read 2 more answers
Select the correct text in the passage. Read the profile of four engineers at different stages of their careers. Which one is an
Mumz [18]

Answer:

Doug has completed an AAS In electrical engineering and is working in a firm under the guidance of a professional engineer.

Explanation:

3 0
3 years ago
Other questions:
  • Q2) An engineer borrowed $3000 from the bank, payable in six equal end-of-year payments at 8%. The bank agreed to reduce the int
    12·1 answer
  • Nitrogen gas flows through a long, constant-diameter adiabatic pipe. It enters at 100 psia and 120°F and leaves at 50 psia and 7
    14·2 answers
  • An aluminum oxide component must not fail when a tensile stress of 12.5 MPa is applied. Determine the maximum allowable surface
    15·1 answer
  • Calculate total hole mobility if the hole mobility due to lattice scattering is 50 cm2 /Vsec and the hole mobility due to ionize
    5·2 answers
  • Answer ppeeeeeaaaalll
    5·1 answer
  • 8. What is the purpose of the 300 Log?
    12·1 answer
  • Hello how are you all bye everyone have a great day ahead​
    8·2 answers
  • The main function of a router is to
    14·2 answers
  • All of these are true about steel EXCEPT that:
    7·1 answer
  • All aspects of the Kirby-Bauer test are standardized to assure reliability. What might be the consequence of pouring the plates
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!