1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
3 years ago
6

A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of ins

ulating materials. The inner and outer radii of the sphere are 0.18 and 0.21 m, respectively, and testing is done under steady-state conditions with the inner surface of the aluminum maintained at 250°C. In a particular test, a spherical shell of insulation is cast on the outer surface of the sphere to a thickness of 0.15 m. The system is in a room for which the air temperature is 20°C and the convection coefficient at the outer surface of the insulation is 30 W/m2 ⋅ K. If 80 W are dissipated by the heater under steady-state conditions, what is the thermal conductivity of the insulation?
Engineering
1 answer:
Stella [2.4K]3 years ago
7 0

Answer:

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

Explanation:

Generally, thermal resistance for conduction heat transfer in a sphere.

R_{cond} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi K}}  

Where R_{cond} is the thermal resistance for conduction, K is the thermal conductivity of the material, r_{i} is the inner radius of the sphere, and r_{o} is the outer radius of the sphere.

The surface area of sphere, A_{s} is given by

A_{s}=4\pi {r^2}

For aluminum sphere, the thermal resistance for conductive heat transfer is given by

Calculate the thermal resistance for conductive heat transfer through the aluminum sphere.

R_{cond,s{\rm{ - 1}}} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}}

Where K_{Al} is aluminum’s thermal conductivity at T_{s}

Thermal resistance for conductive heat transfer through the insulation.

R_{cond,1{\rm{ - 2}}} = \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}}

Thermal resistance for convection is given by

R_{conv} = \frac{1}{{hA}}

Where h is convective heat transfer coefficient, R_{conv} is thermal resistance for convection and A is the cross-sectional area normal to the direction of flow of heat energy

Thermal resistance for convective heat transfer in-between the outer surface of the insulation and the ambient air.

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h{A_s}}}

Where h represents convective heat transfer coefficient at the outer surface of the insulation. Since A_{s} is already defined, substituting it into the above formula yields

R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h\left( {4\pi {r^2}} \right)}}

To obtain radial distance of the outer surface of the insulation from the center of the sphere.

r = r_{o} + t where t is thickness of insulation

r=0.21+0.15=0.36m

Total thermal resistance

R_{eq} = {R_{cond,s{\rm{ - 1}}}} + {R_{cond,1{\rm{ - 2}}}} +{R_{conv,2{\rm{ - }}\infty }}

Where R_{eq} is total thermal resistance

R_{eq} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}

Consider the thermal conductivity of aluminum at temperature T_{s} as 234W/m.K

Rate of heat transfer for the given process

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{{R_{eq}}}}

Where \dot Q_{s - \infty }} is the steady state heat transfer rate in-between the inner surface of the sphere and the ambient air.

Substituting \left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right) for R_{eq} we obtain

\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{\left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right)}}

\begin{array}{l}\\80{\rm{ W}} = \frac{{250{\rm{ }}^\circ {\rm{C}} - 20{\rm{ }}^\circ {\rm{C}}}}{{\left( {\frac{{\left( {\frac{1}{{0.18{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.21{\rm{ m}}}}} \right)}}{{4\pi \left( {234{\rm{ W/m}} \cdot {\rm{K}}} \right)}} + \frac{1}{{30{\rm{ W/}}{{\rm{m}}^2} \cdot {\rm{K}}\left( {4\pi {{\left( {0.36{\rm{ m}}} \right)}^2}} \right)}}\frac{{\left( {\frac{1}{{0.21{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.36{\rm{ m}}}}} \right)}}{{4\pi {K_{ins}}}} + } \right)}}\\\\80{\rm{ W}}\left( {{\rm{0}}{\rm{0.020737 K/W}} + \frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}}} \right) = 230{\rm{ K}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = \frac{{230{\rm{ K}}}}{{80{\rm{ W}}}} - {\rm{0}}{\rm{0.020737 K/W}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = {\rm{2}}{\rm{.854263 K/W}}\\\end{array}

K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K

You might be interested in
When a circuit has more resistance, what happens to current flow ?
zloy xaker [14]
The relationship between resistance and the area of the cross section of a wire is inversely proportional . When resistance is increased in a circuit , for example by adding more electrical components , the current decreases as a result.
6 0
3 years ago
The Micro:bit is considered a what?
Scrat [10]

Sorry need points I'm new

3 0
3 years ago
All of these are uses of microwaves except...
Talja [164]

Answer:D

Explanation:

5 0
2 years ago
A 4-L pressure cooker has an operating pressure of 175 kPa. Initially, one-half of the volume is filled with liquid and the othe
vodomira [7]

Answer:

the highest rate of heat transfer allowed is 0.9306 kW

Explanation:

Given the data in the question;

Volume = 4L = 0.004 m³

V_f = V_g = 0.002 m³

Using Table ( saturated water - pressure table);

at pressure p = 175 kPa;

v_f = 0.001057 m³/kg

v_g = 1.0037 m³/kg

u_f = 486.82 kJ/kg

u_g 2524.5 kJ/kg

h_g = 2700.2 kJ/kg

So the initial mass of the water;

m₁ = V_f/v_f + V_g/v_g

we substitute

m₁ = 0.002/0.001057  + 0.002/1.0037

m₁ = 1.89414 kg

Now, the final mass will be;

m₂ = V/v_g

m₂ = 0.004 / 1.0037

m₂ = 0.003985 kg

Now, mass leaving the pressure cooker is;

m_{out = m₁ - m₂

m_{out = 1.89414  - 0.003985

m_{out = 1.890155 kg

so, Initial internal energy will be;

U₁ = m_fu_f + m_gu_g

U₁ = (V_f/v_f)u_f  + (V_g/v_g)u_g

we substitute

U₁ = (0.002/0.001057)(486.82)  + (0.002/1.0037)(2524.5)

U₁ = 921.135288 + 5.030387

U₁ = 926.165675 kJ

Now, using Energy balance;

E_{in -  E_{out = ΔE_{sys

QΔt - m_{outh_{out = m₂u₂ - U₁

QΔt - m_{outh_g = m₂u_g - U₁

given that time = 75 min = 75 × 60s = 4500 sec

so we substitute

Q(4500) - ( 1.890155 × 2700.2 ) = ( 0.003985 × 2524.5 ) - 926.165675

Q(4500) - 5103.7965 = 10.06013 - 926.165675

Q(4500) = 10.06013 - 926.165675 + 5103.7965

Q(4500) = 4187.690955

Q = 4187.690955 / 4500

Q = 0.9306 kW

Therefore, the highest rate of heat transfer allowed is 0.9306 kW

5 0
3 years ago
Oxides of nitrogen contribute to the formation of?
Nat2105 [25]

Answer:

B. Acid rain.

C. Photochemical smog.

Explanation:

Oxides of nitrogen contribute to the formation of photochemical smog and acid rain. Photochemical smog is a type of smog produced when ultraviolet light from the sun reacts with nitrogen oxides in the atmosphere while on the other hand, when nitrogen oxide react with the water vapor in the atmosphere forming nitric acid which falls on the earth surface with the help of precipitation.

3 0
3 years ago
Other questions:
  • Determine the Thevenin/Norton Equivalent Circuit with respect to the terminalsa,bas shown in the figure. (Here 1A is an independ
    11·1 answer
  • Ayo, how do I change my username on here?
    6·1 answer
  • One kilogram of water contained in a piston–cylinder assembly, initially saturated vapor at 460 kPa, is condensed at constant pr
    15·1 answer
  • In an experiment, the local heat transfer over a flat plate were correlated in the form of local Nusselt number as expressed by
    5·1 answer
  • When welding stick (SMAW) what is the distance between top of bare end of electrode and base metal?
    7·1 answer
  • Is an ideal way for a high school student to see what an engineer does on a typical day but does not provide a hands-on experien
    9·2 answers
  • B)<br>State the essential difference between a plain carbon steel<br>and an alloy steel​
    15·1 answer
  • Describing Tasks for Stationary Engineers Click this link to view O*NET’s Tasks section for Stationary Engineers. Note that comm
    12·2 answers
  • A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture tough
    10·1 answer
  • Once you get the answer correct first i will mark you brainliest!!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!