1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
3 years ago
15

Compare the temperature dependence of Nabarro-Herring and Coble creep. Which is more temperature-sensitive

Engineering
1 answer:
kicyunya [14]3 years ago
7 0
Lower temperatures favor Coble creep and higher temperatures favor Nabbaro–Herring creep because the activation energy for vacancy diffusion within the lattice is typically larger than that along the grain boundaries, thus lattice diffusion slows down relative to grain boundary diffusion with decreasing temperature.
You might be interested in
Calculate the load, PP, that would cause AA to be displaced 0.01 inches to the right. The wires ABAB and ACAC are A36 steel and
Nataly [62]

Answer:

P = 4.745 kips

Explanation:

Given

ΔL = 0.01 in

E = 29000 KSI

D = 1/2 in  

LAB = LAC = L = 12 in

We get the area as follows

A = π*D²/4 = π*(1/2 in)²/4 = (π/16) in²

Then we use the formula

ΔL = P*L/(A*E)

For AB:

ΔL(AB) = PAB*L/(A*E) = PAB*12 in/((π/16) in²*29*10⁶ PSI)

⇒  ΔL(AB) = (2.107*10⁻⁶ in/lbf)*PAB

For AC:

ΔL(AC) = PAC*L/(A*E) = PAC*12 in/((π/16) in²*29*10⁶ PSI)

⇒  ΔL(AC) = (2.107*10⁻⁶ in/lbf)*PAC

Now, we use the condition

ΔL = ΔL(AB)ₓ + ΔL(AC)ₓ = ΔL(AB)*Cos 30° + ΔL(AC)*Cos 30° = 0.01 in

⇒  ΔL = (2.107*10⁻⁶ in/lbf)*PAB*Cos 30°+(2.107*10⁻⁶ in/lbf)*PAC*Cos 30°= 0.01 in

Knowing that   PAB*Cos 30°+PAC*Cos 30° = P

we have

(2.107*10⁻⁶ in/lbf)*P = 0.01 in

⇒  P = 4745.11 lb = 4.745 kips

The pic shown can help to understand the question.

5 0
4 years ago
. Air at 200 C blows over a 50 cm x 75 cm plain carbon steel (AISI 1010) hot plate with a constant surface temperature of 2500 C
MrRissso [65]

Answer:

The inside temperature, T_{in} is approximately 248 °C.

Explanation:

The parameters given are;

Temperature of the air = 20°C

Carbon steel surface temperature 250°C

Area of surface = 50 cm × 75 cm = 0.5 × 0.75 = 0.375 m²

Convection heat transfer coefficient = 25 W/(m²·K)

Heat lost by radiation = 300 W

Assumption,

Air temperature = 20 °C

Hot plate temperature = 250 °C

Thermal conductivity K = 65.2 W/(m·K)

Steady state heat transfer process

One dimensional heat conduction

We have;

Newton's law of cooling;

q = h×A×(T_s - T_{\infty) + Heat loss by radiation

= 25×0.325×(250 - 20) + 300

= 2456.25 W

The rate of energy transfer per second is given by the following relation;

P = \dfrac{K \times A \times \Delta T}{L}

Thermal conductivity K = 65.2 W/(m·K)

Therefore;

2456.25  = \dfrac{65.2 \times 0.375 \times (250 - T_{in})}{0.02}

T_{in} = 250 - \dfrac{2456.25  \times 0.02}{65.2 \times 0.375} = 247.99 ^{\circ}C

The inside temperature, T_{in} = 247.99 °C  ≈ 248 °C.

3 0
4 years ago
Clarifying the issues of a problem is the _____ step in the problem solving process.
ratelena [41]
The answer is 2nd Step because the first step is to define the problem and third is to define your goals
7 0
4 years ago
Refrigerant-134a enters a 28-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. The refrigerant gains heat
Alexandra [31]

Answer:

V = 0.30787 m³/s

m = 2.6963 kg/s

v2 =  0.3705 m³/s

v2 = 6.017 m/s

Explanation:

given data

diameter = 28 cm

steadily =200 kPa

temperature = 20°C

velocity = 5 m/s

solution

we know mass flow rate is

m = ρ A v

floe rate V = Av

m = ρ V

flow rate = V = \frac{m}{\rho}

V = Av = \frac{\pi}{4} * d^2 * v1

V = \frac{\pi}{4} * 0.28^2 * 5

V = 0.30787 m³/s

and

mass flow rate of the refrigerant is

m = ρ A v

m = ρ V

m = \frac{V}{v} = \frac{0.30787}{0.11418}

m = 2.6963 kg/s

and

velocity and volume flow rate at exit

velocity = mass × v

v2 = 2.6963 × 0.13741 = 0.3705 m³/s

and

v2 = A2×v2

v2 = \frac{v2}{A2}

v2 = \frac{0.3705}{\frac{\pi}{4} * 0.28^2}

v2 = 6.017 m/s

7 0
4 years ago
Engineers in Russia invented a new way to create colorful art with a __________.
Setler [38]

The Engineers in Russia invented a new way to create colorful art with constructivist art.

<h3>What is constructivist art?</h3>

Constructivist art was aimed to reflect modern industrial society and urban space in art. It uses industrial production forms and modest materials for its art production.

The constructivists proposed to replace traditional art's with a focus on construction as Engineers rather than a painter.

Therefore, the Engineers in Russia invented a new way to create colorful art with constructivist art using construction.

Learn more on constructivist here,

brainly.com/question/14054863

3 0
3 years ago
Other questions:
  • HELP PLEASE<br> this is for drivers ed btw
    5·1 answer
  • Is air conditioner a refrigerator?
    10·1 answer
  • A stainless-steel specimen from the same material characterized up above, was formed into a rectangular cross-section of dimensi
    9·1 answer
  • A long rod of 60-mm diameter and thermophysical properties rho=8000 kg/m^3, c=500J/kgK, and k=50 W/mK is initally at a uniform t
    8·1 answer
  • The website of a bank that an organization does business with has been reported as untrusted by the organization's web browser.
    12·1 answer
  • 5. The pin support at A allows _______. Select the one that applies. (a) displacement in the x direction (b) rotation about its
    15·1 answer
  • Summarize the difference in hydraulic and pneumatic systems.
    12·1 answer
  • For binary flash distillation, we discussed in class that there are 8 variables (F, ZA, V, ya, L, XA, P and T) and 4 equations d
    10·1 answer
  • What additive keeps engines clean by preventing contaminants and deposits from collecting on surfaces?
    10·2 answers
  • (i) what assumptions about the relationship between the inputs and output are inherent in this specification? do scatter plots s
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!