Staying hydrated at all times
The brakes are being bled on a passenger vehicle with a disc/drum brake system is described in the following
Explanation:
1.Risk: Continued operation at or below Rotor Minimum Thickness can lead to Brake system failure. As the rotor reaches its minimum thickness, the braking distance increases, sometimes up to 4 meters. A brake system is designed to take kinetic energy and transfer it into heat energy.
2.Since the piston needs to be pushed back into the caliper in order to fit over the new pads, I do open the bleeder screw when pushing the piston back in. This does help prevent debris from traveling back through the system and contaminating the ABS sensors
3.There are three methods of bleeding brakes: Vacuum pumping. Pressure pumping. Pump and hold.
4,Brake drag is caused by the brake pads or shoes not releasing completely when the brake pedal is released. ... A worn or corroded master cylinder bore causes excess pedal effort resulting in dragging brakes. Brake Lines and Hoses: There may be pressure trapped in the brake line or hose after the pedal has been released.
Answer:
2.0%
Explanation:
Percentage of aggregate = 94%
Specific gravity = 2.65
Specific gravity of asphalt = 1.9
Density of mix = 147pcf = 147lb/ft³
Total weight of mix: (volume = 1ft³)
= (147lb/ft³)(1ft³)
= 147lb
Percentage weight of asphalt in<u> mix:</u>
100% - 94%
= 6%
Weight of asphalt binders
= 6% x 147lb
= 8.82lb
Weight of aggregate in mix:
= 94% x 147
= 138.18lb
Specific weight of asphalt binder:
(Gab)(Yw)
Yw = specific Weight of water
= 62.4lb
Gab = specific gravity of asphalt binder
= 1.0
(62.4lb)(1.0)
= 62.4 lb/ft³
Volume of asphalt in binder:
8.82/62.4
= 0.14ft³
Specific weight of binder in mix:
2.65 x 62.4lb/ft³
= 165.36 lb/ft³
Volume of aggregate:
= 138.18/165.36
= 0.84ft³
Volume of void in the mix:
1ft³ - 0.84ft³ - 0.14ft³
= 0.02ft³
<u>The percentage of void in total mix:</u>
VTM = (0.02ft³/1ft³)100
= 2.0%
Answer: (a) 9.00 Mega Newtons or 9.00 * 10^6 N
(b) 17.1 m
Explanation: The length of wall under the surface can be given by

The average pressure on the surface of the wall is the pressure at the centeroid of the equilateral triangular block which can be then be calculated by multiplying it with the Plate Area which will provide us with the Resultant force.
![F(resultant) = Pavg ( A) = (Patm + \rho g h c)*A \\= [100000 N/m^2 + (1000 kg/m^3 * 9.81 m/s^2 * 25m/2)]* (140*25m/sin60)\\= 8.997*10^8 N \\= 9.0*10^8 N](https://tex.z-dn.net/?f=F%28resultant%29%20%3D%20Pavg%20%28%20A%29%20%3D%20%28Patm%20%2B%20%20%5Crho%20g%20h%20c%29%2AA%20%5C%5C%3D%20%5B100000%20N%2Fm%5E2%20%2B%20%281000%20kg%2Fm%5E3%20%2A%209.81%20m%2Fs%5E2%20%2A%2025m%2F2%29%5D%2A%20%28140%2A25m%2Fsin60%29%5C%5C%3D%208.997%2A10%5E8%20N%20%5C%5C%3D%209.0%2A10%5E8%20N)
Noting from the Bernoulli equation that

From the second image attached the distance of the pressure center from the free surface of the water along the surface of the wall is given by:
Substituting the values gives us the the distance of the surface to be equal to = 17.1 m
Answer:
Absolute Pressure=315.06256 kPa
Explanation:
Gauge pressure= 31 psi
Atmospheric Pressure at Sea level= 1 atm=101.325 kPa
