Answer:
Final Velocity (Vf)= 139.864 ft/s
Time (t)= 4,34 s
Explanation:
This is a free fall problem, to solve it we will apply free fall concepts:
In a free fall the acceletarion is gravity (g) = 9,81 m/s2, if we convert it to ft/s^2 = g= 32.174 ft/s^2
- Final velocity is Vf= Vo+ g*t[tex]Vf^{2} = Vo^{2} +2*g*h
where h is height (304 ft in this case).
Vo =0 since the hammer wasn't moving when it stared to fall
Then Vf^2= 0 + 2* 32.174 ft/s^2 *304 ft
Vf^2= 19,561.8224 ft^2/s^2
Vf=[sqrt{19561.8224 ft^2/s^2}
Vf=139.864 ft/s
Time t= (Vf-Vo)/g => (139.864 ft/s-0)/32.174 ft/s^2 = 4.34 sec
Good luck!
Explanation:
The earliest civil engineer known by name is Imhotep. As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630–2611 BC.
A high voltage!! Hope this helps
Answer:
125 cm³/min
Explanation:
The material rate of removal is usually given by the formula
Material Rate of Removal = Radial Depth of Cut * Axial Depth of Cut * Feed Rate, where
Radial Depth of Cut = 25 mm
Axial depth of cut = 200 mm
Feed rate = 25 mm/min
On multiplying all together, we will then have
MRR = 25 mm * 200 mm * 25 mm/min
MRR = 125000 mm³/min
Or we convert it to cm³/min and have
MRR = 125000 mm³/min ÷ 1000
MRR = 125 cm³/min
Answer:
1) q=18414.93 W
2) C=12920$
Explanation:
Given data:
pipe length L=25m
pipe diameter D=100mm =0.1 m
air temperature
=
=25
°C.....= 298.15k
pipe surface temp
=150
°C.....=423.15k
surface emissivity e= 0.8
boiler efficiency η=0.90
natural gas price Cg=$0.02 per MJ
1) Total heat loss and radiation heat loss combined
q=
q=
б(
^4-
^4)]....... (1)
б=5.67×10^-8 W/m^2K^4 (boltzmann constant)
area A =L.Dπ=25×0.1π=7.85 m^2
putting all these values in eq (1)
q=18414.93 W
2) suppose boiler is operating non stop annual energy loss will be
E=q.t
=18414.93.3600.24.365
=5.81×10^11 J
to find furnace energy consumption
Ef =E/η
=6.46×10^5 MJ
annual cost
C=Cg. Ef
=12920$