1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bija089 [108]
3 years ago
13

A grinding wheel manufacturer designed a new grinding wheel. Repeated tests were conducted on wheels of approximately the same w

eight. The tests showed that the new wheel enables free-cutting steels to be cut on an average of 225 surface feet per minute (SFM) with a standard deviation of 16.5 SFM and that the cutting rates are approximately normally distributed.a) What is the 75th percentile of the distribution of cutting rates?---I got 236.137 SFMb) What is the probability that at least 3 wheels out of 10 randomly selected wheels in the study will have a cutting rate that is greater than the cutting rate calculated in part (a)?c) What is the probability that a randomly selected sample of 5 wheels in the study will have a mean cutting rate of at least 225 SFM?
Mathematics
1 answer:
sergejj [24]3 years ago
4 0

Answer:

a) a=225 +0.674*16.5=236.121

So the value of height that separates the bottom 75% of data from the top 25% is 236.121.  

b) P(X \geq 3) = 1-P(X

c) P(\bar X \geq 225)=1- P(\bar X

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

2) Part a

Let X the random variable that represent the cuts of a population, and for this case we know the distribution for X is given by:

X \sim N(225,16.5)  

Where \mu=225 and \sigma=16.5

For this part we want to find a value a, such that we satisfy this condition:

P(X>a)=0.25   (a)

P(X   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.75 of the area on the left and 0.25 of the area on the right it's z=0.674. On this case P(Z<0.674)=0.75 and P(z>0.674)=0.25

If we use condition (b) from previous we have this:

P(X  

P(z

But we know which value of z satisfy the previous equation so then we can do this:

z=0.674=\frac{a-225}{16.5}

And if we solve for a we got

a=225 +0.674*16.5=236.121

So the value of height that separates the bottom 75% of data from the top 25% is 236.121.  

Part b

For this case we know that the individual probability of select one wheel with a cutting rate higher than the calculated value in part a is 0.25, and we select n =10 so then we can use the binomial distribution for this case:

X\sim Bin(n=10, p=0.25)

And we want this probability:

P(X \geq 3) = 1-P(X

We can find the individual probabilities like this:

P(X=0)=(10C0)(0.25)^0 (1-0.25)^{10-0}=0.0563

P(X=1)=(10C1)(0.25)^1 (1-0.25)^{10-1}=0.1877

P(X=2)=(10C2)(0.25)^2 (1-0.25)^{10-2}=0.2816

P(X \geq 3) = 1-P(X

Part c

For this case we know that the distribution for the sample mean is given by:

\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})

And we want this probability:

P(\bar X \geq 225)

And for this case we can use the complement rule and the z score given by:

z= \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}

And if we replace we got:

P(\bar X \geq 225)=1- P(\bar X

You might be interested in
Solve the system of equations for x and y.<br> y = x + 5<br> y = 2x + 2
DIA [1.3K]
Answer (x,y) (3, -2)

Explanation:
using the
substitution method
y
=
x
−
5
→
(
1
)
y
=
−
2
x
+
4
→
(
2
)
since both equations are expressed in terms of x we

can equate them
⇒
x
−
5
=
−
2
x
+
4
add 2x to both sides
2
x
+
x
−
5
=
−
2
x
+
2
x
+
4
⇒
3
x
−
5
=
4
add 5 from both sides
3
x
+
5
−
5
=
4
+
5
⇒
3
x
=
9
divide both sides by 3
3
x
3
=
9
3
⇒
x
=
3
substitute this value in
(
1
)
y
=
3
−
5
=
−
2
As a check
substitute these values into
(
2
)
right
=
−
6
+
4
=
−
2
=
left
⇒
point of intersection
=
(
3
,
−
2
)
3 0
3 years ago
The weekly amount spent by a small company for in-state travel has approximately a normal distribution with mean $1450 and stand
Llana [10]

Answer:

0.0903

Step-by-step explanation:

Given that :

The mean = 1450

The standard deviation = 220

sample mean = 1560

P(X > 1560) = P( Z > \dfrac{x - \mu}{\sigma})

P(X > 1560) = P(Z > \dfrac{1560 - 1450}{220})

P(X > 1560) = P(Z > \dfrac{110}{220})

P(X> 1560) = P(Z > 0.5)

P(X> 1560) = 1 - P(Z < 0.5)

From the z tables;

P(X> 1560) = 1 - 0.6915

P(X> 1560) = 0.3085

Let consider the given number of weeks = 52

Mean \mu_x = np = 52 × 0.3085 = 16.042

The standard deviation =  \sqrt {n \time p (1-p)}

The standard deviation = \sqrt {52 \times 0.3085 (1-0.3085)}

The standard deviation = 3.3306

Let Y be a random variable that proceeds in a binomial distribution, which denotes the number of weeks in a year that exceeds $1560.

Then;

Pr ( Y > 20) = P( z > 20)

Pr ( Y > 20) = P(Z > \dfrac{20.5 - 16.042}{3.3306})

Pr ( Y > 20) = P(Z >1 .338)

From z tables

P(Y > 20) \simeq 0.0903

7 0
3 years ago
Help again! Just these last 3 questions. I don't wanna beg for answers, but I need help thank you. This assis due in a few minut
lana [24]

Answer:

Question 4: 20 + 6 + 6 + 12 + 16 = 60 yd^{2}

Question 5: 144 + 90 + 90 + 48 + 48 = 420 m^{2}

Question 6: 78.28 + 78.28 + 88.58 + 27.09 + 27.09 = 299.32 ft^{2}

Step-by-step explanation:

Hope this helps!

6 0
3 years ago
The mean of Alice's last 5 math test scores is 88. The first 4 of these 5 math test scores were 87, 75, 93, and 85. What score d
stiks02 [169]

Answer:

Step-by-step explanation:

x is the score she got on the fifth test.

Since her average score is 88, the sum of all five tests is 5×88.

x + 87 + 75 + 93 + 85 = 5×88 = 440

x = 440 -  87 - 75 - 93 - 85

x = 100

She got a 100 on her fifth test.

6 0
2 years ago
8p + 2q = -16<br> 2p - q=2
yKpoI14uk [10]

Answer:

p = -1  q = -4

Step-by-step explanation:

a system of eq and solve for p and q ???  can do  :)

Eq. 1)  8p + 2q = - 16

Eq. 2)  2p - q = 2

use Eq .2 and solve for q

2p - 2 = q

plug into Eq.1 with q

8p +2(2p - 2) = - 16

8p +4p -4 = -16

12p = - 12

p = -1

plug -1 into Eq. 1 for p and solve for q

8(-1) + 2q = - 16

-8 + 2q = - 16

2q = -8

q = -4

8 0
3 years ago
Other questions:
  • If two equations in a linear system have the same slope and the same -intercepts, the system will have:'
    12·1 answer
  • Jennifer wants to build a rectangular fence around her garden that is 6 feet by 10 feet how many feet of fencing does she need t
    14·2 answers
  • 40 points if any answers first
    15·1 answer
  • PLEASE HELP ME WITH ME MATH In a survey of 3500 people who owned a certain type of​ car, 1750 said they would buy that type of c
    12·1 answer
  • Which of the following values of n will result in a true statement when
    10·2 answers
  • Please help
    11·2 answers
  • Find the slope of UV.*
    10·1 answer
  • You deposit $8500 in an account that pays 1.78% annual interest. Find the balance after 10 years when the interest is compounded
    5·2 answers
  • Please help me fast this is due tomorrow!!
    11·1 answer
  • Find the 12th term in the arithmetic sequence an = 3 − 6(n − 1)
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!