Answer:
Work is best defined as a force exerted on a body to cause it move over a certain distance.
work=force×displacement×cosθ
Explanation:
Answer:
Option A.
Explanation:
The correct answer is Option A.
The car uses energy to move.
A car is a machine that converts energy locked in fuel like petrol or diesel and turn it into mechanical energy.
The energy produced from the combustion of gasoline is then used to move the shaft, which sends the power to the rear axle and the wheel starts to move.
Answer:
is the compression in the spring
Explanation:
Given:
- mass of the bullet,

- mass of block,

- stiffness constant of the spring,

- initial velocity of the spring just before it hits the block,

<u>Now since the bullet-mass gets embed into the block, we apply the conservation of momentum as:</u>



Now this kinetic energy of the combined mass gets converted into potential energy of the spring.



is the compression in the spring
Answer:
The spring's maximum compression will be 2.0 cm
Explanation:
There are two energies in this problem, kinetic energy
and elastic potential energy
(with m the mass, v the velocity, x the compression and k the spring constant. ) so the total mechanical energy at every moment is the sum of the two energies:

Here we have a situation where the total mechanical energy of the system is conserved because there are no dissipative forces (there's no friction), so:


Note that at the initial moment where the hockey puck has not compressed the spring all the energy of the system is kinetic energy, but for a momentary stop all the energy of the system is potential elastic energy, so we have:

(1)
Due conservation of energy the equality (1) has to be maintained, so if we let k and m constant x has to increase the same as v to maintain the equality. Therefore, if we increase velocity to 2v we have to increase compression to 2x to conserve the equality. This is 2(1.0) = 2.0 cm