To convert 78.1 g of water at 0° C to Ice at -57.1°C; we can do it in steps;
1. Water at 0°C to ice at 0°C
The heat of fusion of ice is 334 J/g;
Heat = 78.1 × 334 = 26085.4 Joules
2. Ice at 0°C to -57.1°C
Specific heat of ice is 2.108 J/g
Heat = 78.1 × 2.108 J/g = 164.6348 Joules
Thus the total heat energy released will be; 26085.4 + 164.6348
= 26250.0348 J or 26.250 kJ
Answer:
Carbon dioxide, water, and sunlight
Explanation:
Answer:
12.9 m³ is the new volume
Explanation:
As the temperature keeps on constant, and the moles of the gas remains constant too, if we decrease the pressure, the volume will increase. If the volume is decreased, pressure will be higher.
The relation is this: P₁ . V₁ = P₂ . V₂
1 atm . 0.93m³ = 0.072 atm . V₂
0.93m³ .atm / 0.072 atm = V₂
V₂ = 12.9 m³
In conclusion and as we said, pressure has highly decreased so volume has highly increased.
Answer:
(i) Bohr; (ii) de Broglie; (iii) Heisenberg (v) Schrödinger
Explanation:
(i) Niels Bohr — 1913 — proposed that electrons travel in fixed orbits with <em>quantized energy levels</em> and that they jump from one energy level to another by absorbing or emitting quanta of light.
(ii) <em>Louis de Broglie</em> — 1924 — proposed the wave nature of electrons and suggested that all matter behaves as both waves and particles (<em>wave-particle duality</em>).
(iii) Werner Heisenberg — 1927 — formulated quantum mechanics in terms of matrices and proposed his famous <em>uncertainty principle</em>.
(v) Erwin Schrödinger — 1926 — applied wave mechanics to the electron in a hydrogen atom, showing that electrons exist in <em>orbitals </em>rather that orbits.
(iv) <em>Ernest Rutherford</em> — 1911 — proposed that atoms have most of their mass in a central nucleus (<em>nuclear atom</em>). Quantum mechanics had not yet been invented.
Answer:
There is no picture, how can we help?
Explanation: