The balanced equation for the reaction is as follows
2H₂ + O₂ --> 2H₂O
stoichiometry of H₂ to O₂ is 2:1
number of H₂ moles - 30.0 g / 2 g/mol = 15 mol
number of O₂ moles - 80.0 g / 32 g/mol = 2.5 mol
limiting reactant is the reagent in which only a fraction is used up in the reaction
if H₂ is the limiting reactant
if 2 mol of H₂ requires 1 mol of O₂
then 15 mol of H₂ requires 1/2 x 15.0 = 7.5 mol of O₂
but only 2.5 mol of O₂ is required
this means that O₂ is the limiting reagentt and H₂ is in excess
Cao + H2O ---->Ca(OH)2
Calculate the number of each reactant and the moles of the product
that is
moles = mass/molar mass
The moles of CaO= 56.08g/ 56.08g/mol(molar mass of Cao)= 1mole
the moles of water= 36.04 g/18 g/mol= 2.002moles
The moles of Ca (OH)2=74.10g/74.093g/mol= 1mole
The mass of differences of reactant and product can be therefore
explained as
1 mole of Cao reacted completely with 1 mole H2O to produce 1 mole of Ca(OH)2. The mass of water was in excess while that of CaO was limited
<h3>Answer:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
<h3>Solution:</h3>
According to Boyle's Law, " <em>The Volume of a given mass of gas at constant temperature is inversely proportional to the applied Pressure</em>". Mathematically, the initial and final states of gas are given as,
P₁ V₁ = P₂ V₂ ----------- (1)
Data Given;
P₁ = 500 mmHg
V₁ = 9.0 mL
P₂ = 750 mmHg
V₂ = ??
Solving equation 1 for V₂,
V₂ = P₁ V₁ / P₂
Putting values,
V₂ = (500 mmHg × 9.0 mL) ÷ 750 mmHg
V₂ = 6.0 mL
<h3>Result:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
ANSWER:
Potential energy due to the position of an object above Earth's surface is called gravitational potential energy.
EXPLANATION:
Gravitational energy is the potential energy compared with gravitational force, as work is needed to further things against Earth’s gravity. The potential energy due to high positions is called gravitational potential energy, and is evidenced by water in an elevated storage or kept behind a dam. If an article falls from one point to different point inside a gravitational field, the force of gravitation will do actual work on the object, and the gravitational potential energy will decrease by the same amount.
D it’s quartz on the Mohs scale thing it’s ranked 7