Answer:
The molar mass of the organic solid is 120.16 g/mol.
The molecular formula of an organic solid is 
Explanation:
Let the molecular mass of an organic solid be 


where,
=Elevation in boiling point = 
Mass of organic solid= 0.561 g
Mass of diphenyl = 24.9 g = 0.0249 kg (1 kg = 1000 g)
= boiling point constant = 8.00 °C/m
m = molality
Now put all the given values in this formula, we get



Percentage of carbon in an organic solid = 40.0%

x = 4.0
Percentage of hydrogen in an organic solid = 6.7%

y = 8.0
Percentage of hydrogen in an organic solid = 6.7%

y = 4.0
The molecular formula of an organic solid is 
Answer: E = 2.455 x 10^5 N/C
Explanation:
q1 = 1.2x10^-7C
q2 = 6.2x10^-8C
Electric field, E = kQ/r²
where k = 9.0x10^9
since the location is (27 - 5)cm from q1
hence electric field, E1 = k*q1/r²
E1= (9x10^9 x 1.2x10^-7)/(0.22)² = 22314.05 N/C
for q2:
E1 = k*q2/r²
E2 at 5cm
E2 = (9x10^9 x 6.2x10^-8)/(0.05)² = 223200 N/C
Hence, the total electric field at 5cm position is
E = E1 + E2
E = 22314.05 + 223200 = 245514.05 N/C
E = 2.455 x 10^5 N/C
Answer:
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly.Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves. A vibrating string can create longitudinal waves as depicted in the animation below.
Explanation: