Answer:
It can't be done.
Explanation:
If you have only 5.4 g of oxygen, the most lithium oxide you can get is 7.7 g.
Only 2.3 g of lithium will react. and the other 22.3 g of lithium will not be used.
Answer:
The percent isotopic abundance of C- 12 is 98.93 %
The percent isotopic abundance of C- 13 is 1.07 %
Explanation:
we know there are two naturally occurring isotopes of carbon, C-12 (12u) and C-13 (13.003355)
First of all we will set the fraction for both isotopes
X for the isotopes having mass 13.003355
1-x for isotopes having mass 12
The average atomic mass of carbon is 12.0107
we will use the following equation,
13.003355x + 12 (1-x) = 12.0107
13.003355x + 12 - 12x = 12.0107
13.003355x- 12x = 12.0107 -12
1.003355x = 0.0107
x= 0.0107/1.003355
x= 0.0107
0.0107 × 100 = 1.07 %
1.07 % is abundance of C-13 because we solve the fraction x.
now we will calculate the abundance of C-12.
(1-x)
1-0.0107 =0.9893
0.9893 × 100= 98.93 %
98.93 % for C-12.
The solubility KI is 50 g in 100 g of H₂O at 20 °C. if 110 grams of ki are added to 200 grams of H₂O <u>the </u><u>solution </u><u>will be </u><u>saturated</u><u>.</u>
<h3>What is solubility?</h3>
Solubility is a condition where the solute is fully dissolved in the solvent. When fully mixed with the solvent.
Given that 50 g of KI is added to 100 g of water at 20 °C it means 100 g of water can dissolve a maximum of 50 g of KCl.
1 g of water will dissolve an quantity of 0.5 g of KCl.
To assay for 200 g of water: 200 g of water can disintegrate a maximum of (0.5) x 200 g of KCl.
The maximum amount of KCl that will dissolve is 100 g
Actualised amount dissolved = 110 g
when Amount dissolved > Maximum solubility limit
110 g > 100 g
Thus, the solution is saturated.
To learn more about solubility, refer to the below link:
brainly.com/question/8591226
#SPJ4
Answer:
avogadro's constant
Explanation:
this is the fixed number of the atoms in the molecule of an element
avogadro's law states that equal volumes of gases<em> </em><em>at</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>temperature</em><em> </em><em>and</em><em> </em><em>pressure</em><em> </em><em> </em><em>contain</em><em> </em><em>equal</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>molecules</em><em> </em>
<em>that</em><em> </em><em>is</em><em> </em><em>all</em><em> </em><em>gases</em><em> </em><em>with</em><em> </em><em>same</em><em> </em><em>temperature</em><em> </em><em>and</em><em> </em><em>pressure</em><em> </em><em>will</em><em> </em><em>always</em><em> </em><em>have</em><em> </em><em>equal</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>molecules</em><em> </em>