Answer:
A
Step-by-step explanation:
<h3>Given:</h3>
- Hemisphere ×2 or sphere
- Cylinder
<h3>Solution:</h3><h3>Volume of the sphere:</h3>
<h3>Volume of the cylinder:</h3>
<h3>Total volume:</h3>
<u>Hence</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>compound</u><u> </u><u>shape</u><u> </u><u>is</u><u> </u><u>108.91</u><u> </u><u>cubic</u><u> </u><u>meters</u><u>.</u>
Answer:
(-4, 0) U (1, ∞)
Step-by-step explanation:
Set each factor EQUAL to zero to find the zeroes (since it is not actually equal to zero, you will use an open circle when graphing and an open bracket when writing in interval notation).
x = 0 x-1 = 0 x + 4 = 0
x = 1 x = -4
Next, choose a value to the far left, between each of the zeroes, and to the far right to evaluate if it makes a true statement when input into the given inequality.
far left (I choose -5): -5(-5 - 1)(-5 + 4) > 0 → (-)(-)(-) > 0 → negative > 0 FALSE
- 4 to 0 (I choose -2): -2(-2 - 1)(-2 + 4) > 0 → (-)(-)(+) > 0 → positive > 0 TRUE
0 to 1 (I choose 0.5): .5(.5 - 1)(.5 + 4) > 0 → (+)(-)(+) > 0 → negative > 0 FALSE
far right (I choose 2): 2(2 - 1)(2 + 4) > 0 → (+)(+)(+) > 0 → positive > 0 TRUE
We can write this as:-
P(x) = + x^3 - 5x^2 - 25x + 125
There are 2 changes of real sign so by Descartes Rule of signs there are either 2 positive real roots or 0 positive roots.
P(-x) = - x^3 - 5x^2 + 25x + 125
There is just one change of sign so there is exactly 1 real negative root.
125 is a multiple of 5 so By rational root theorem 5 could be a positive root.
P(5) = 125 - 125 - 125 + 125 = 0 so one zero is 5
if we divide the polynomial by (x - 5) we get the quadratic
x^2 - 25
(x + 5)(x - 5) = 0
x = 5,-5
so the roots are 5 (multiplicity 2) and -5.
2 real positive zeroes and one real negative zero
Answer:
fifty-two. Explanation: g(h(−1 ))=g(x). x=h(−1)=4(−1)−3=−4−3=−7. g(x)= g(−7)=72+3=49+3=52.