1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
3 years ago
11

Which happens to the magnetic field of a wire when you change the direction of the current in the wire? It becomes stronger. It

becomes weaker. It changes direction too. It stays the same.
Physics
1 answer:
scZoUnD [109]3 years ago
7 0
Answer C. The magnetic field changes direction too.
You might be interested in
1. The gravitational force acting on a falling body and its weight is constant. But the law of universal gravitation tells us th
vagabundo [1.1K]
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
3 0
3 years ago
A 5 kg object near Earth's surface is released from rest such that it falls a distance of 10 m. After the object falls 10 m, it
makkiz [27]

Answer:D

Explanation:

Given

mass of object m=5 kg

Distance traveled h=10 m

velocity acquired v=12 m/s

conserving Energy at the moment when object start falling and when it gains 12 m/s velocity

Initial Energy=mgh=5\times 9.8\times 10=490 J

Final Energy=\frac{1}{2}mv^2+W_{f}

=\frac{1}{2}\cdot 5\cdot 12^2+W_{f}

where W_{f} is friction work if any

490=360+W_{f}

W_{f}=130 J

Since Friction is Present therefore it is a case of Open system and net external Force is zero

An open system is a system where exchange of energy and mass is allowed and Friction is acting on the object shows that system is Open .

4 0
3 years ago
A point charge (–5.0 µC) is placed on the x axis at x = 4.0 cm, and a second charge (+5.0 µC) is placed on the x axis at x = –4.
AveGali [126]

Answer:

The magnitude of electric force is  7.2\times10^{-3} N

Explanation:

Coulomb's Law:

The force of attraction or repletion is

  • directly proportional to the products of charges i.e F\propto q_1q_2
  • inversely proportional to the square of distance i.e F\propto \frac{1}{r^2}

\therefore F\propto \frac{q_1q_2}{r^2}

\Rightarrow F=k \frac{q_1q_2}{r^2}    [ k is proportional constant=9×10⁹N m²/C²]

There are two types of force applied on Q=+2.5 μC=2.5×10⁻⁶ C

Let F₁ force be applied on Q =+2.5 μC by q₁= -5.0 μC = - 5.0×10⁻⁶ C

and F₂ force  be applied on Q=+2.5 μC by q₂= 5.0 μC= 5.0×10⁻⁶ C

Since the magnitude of F₁ and F₂ are same. Therefore their y component cancel.

If we draw a line from q₁ to Q .

The it forms a triangle whose base = 4.0 cm and altitude =3.0 cm.

Let hypotenuse = r

Therefore, r=\sqrt{altitude^2+base^2} =\sqrt{3^2+4^2} =5

we know,

cos \theta = \frac{base }{hypotenuse}

\Rightarrow cos \theta = \frac{4 }{r}

Total force F_Q = 2.F_1 cos\theta \hat{i}

                         =2k\frac{Qq_1}{r^2} cos\theta \hat i

                         =2\ \frac{9\times1 0^9\times2.5 \times 5\times 10^{-12}}{r^2} \frac{4}{r} \hat i

                         =8\ \frac{9\times10^9\times2.5 \times 5\times 10^{-12}}{5^3} \hat i     [ r=5]

                         =7.2\times10^{-3}\hat i   N

The magnitude of electric force is  7.2\times10^{-3} N

                         

3 0
3 years ago
In the diagram, q1= +8.0 C, q2= +3.5 C, and q3 = -2.5 C. q1 to q2 is 0.10 m, q2 to q3 is 0.15 m. What is the net force on q2? La
yulyashka [42]

Answer:

f(t) =  28,7 [N]

Explanation: IMPORTANT NOTE: IN PROBLEM STATEMENT CHARGES ARE IN C (COULOMBS) AND IN THE DIAGRAM IN μC. WE ASSUME CHARGES ARE IN μC.

The net force on +q₂  is the sum of the force of +q₁  on +q₂ ( is a repulsion force since charges of equal sign repel each other ) and the force of -q₃ on +q₂ ( is an attraction force, opposite sign charges attract each other)

The two forces have the same direction to the right of charge q₂, we have to add them

Then

f(t) = f₁₂ + f₃₂

f₁₂ = K * ( q₁*q₂ ) / (0,1)²

q₁  = + 8 μC     then   q₁ = 8*10⁻⁶ C

q₂ =  + 3,5 μC  then  q₂ = 3,5 *10⁻⁶ C

K = 9*10⁹  [ N*m² /C²]

f₁₂ = 9*10⁹ * 8*3,5*10⁻¹²/ 1*10⁻²   [ N*m² /C²]* C*C/m²

f₁₂ = 252*10⁻¹ [N]

f₁₂ = 25,2 [N]

f₃₂ =  9*10⁹*3,5*10⁻⁶*2,5*10⁻⁶ /(0,15)²

f₃₂ =  78,75*10⁻³/ 2,25*10⁻²

f₃₂ =  35 *10⁻¹

f₃₂ =  3,5 [N]

f(t) =  28,7 [N]

5 0
3 years ago
Read 2 more answers
Can an object's average velocity equal zero when object's speed is greater than zero.
notsponge [240]
No, because the magnitude of the velocity is always greater than speed.
6 0
3 years ago
Other questions:
  • A race car travels 44.3 m/s around a banked (45° with the horizontal) circular (radius = 200 m) track. What is the magnitude of
    6·1 answer
  • A student gives a brief push to a block of dry ice. A moment later, the block moves across a very smooth surface at a constant s
    14·2 answers
  • An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary
    5·1 answer
  • Which of the following describes what will happen when one lowers the kinetic energy of the particles in a sample of matter?
    5·1 answer
  • How does a force pumb works​
    13·2 answers
  • Which of these determines an objects ability to sink or float in water?
    5·1 answer
  • Explain the steps of electric power transmission
    11·1 answer
  • A certain part of a flat screen TV has a thickness of 150 nanometers. How many meters is this?
    8·1 answer
  • Why is the pendulum a good example of simple harmonic motion? Under what conditions the pendulum could not be used as a good exa
    11·1 answer
  • Two remote control cars with masses of 1.16 kilograms and 1.98 kilograms travel toward each other at speeds of 8.64 meters per s
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!