The answer is C) an electromagnetic wave
An electromagnetic wave, which includes electromagnetic radiation such as visible light, moves the fastest of all of the options listed by a significant margin, especially through space. In fact, light travelling through space is technically the theoretical limit of how fast something can travel.
B- the acceleration is greater for the more massive rock
Explanation:
Given that,
The mass of rock, m = 2.35-kg
It was released from rest at a height of 21.4 m.
(a) The kinetic energy is given by : 
As the rock was at rest initially, it means, its kinetic energy is equal to 0.
(b) The gravitational potential energy is given by : 
It can be calculated as :

(c) The mechanical energy is equal to the sum of kinetic and potential energy such that,
M = 0 J + 492.84 J
M = 492.84 J
Hence, this is the required solution.
Explanation:
Let f is the frequency of an oscillation and T is the period of the oscillation. There exists an inverse relationship between the frequency and the time period of the oscillation. Mathematically, it is given by :

Also, 
So,

The time taken to complete one oscillation is called the period of the oscillation and the number of oscillation is called the frequency if an oscillation.