If the measurement is in joules then you can push something or pull something as long as you are moving the object. Formula: f*n force times newtons
Answer:
Acceleration = 4 m/s²
Explanation:
Given the following data;
Force = 8 N
Mass = 2 kg
To find the acceleration of the block;
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Substituting into the formula, we have;
Acceleration = 4 m/s²
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where

<span>Density is a value for
mass, such as kg, divided by a value for volume, such as m3. Density is a
physical property of a substance that represents the mass of that substance per
unit volume. It is a property that can be used to describe a substance. We calculate as follows:
</span><span>Volume = 60.0 g ( 1 mL / 0.70 g ) = 85.71 mL
Therefore, the correct answer is option B.</span>
Answer:
D. The temperature does not change during a phase change because the average kinetic energy does not change. Therefore, the potential energy in the bonds between molecules must change.
Explanation:
When there is a change of state (for example, from solid into a liquid, as in this example), when energy is added to the system, the temperature of the substance does not change.
The reason for this is that the energy supplied is no longer used to increase the average kinetic energy of the particle, but instead it is used to break the bonds between the different particles/molecules. For instance, since in this case the substance is changing from solid to liquid, all the energy supplied during the phase change is used to break the bonds between the molecules of the solid: when the process is done, all the molecules will be free to slide past each other, and the substance has turned completely into a liquid.
The bonds between molecules store potential energy: therefore, this means that the energy supplied during the phase change is not used to change the kinetic energy, but to change the potential energy in the bonds between the molecules.