Answer:
(a) 3107.98 J
(b) 14530.6 J
Explanation:
mass, m = 3.56 kg
angular speed, ω = 179 rad/s
Moment of inertia of solid cylinder, I = 1/2 mr^2
where, m is the mass and r be the radius of the cylinder.
(a) radius, r = 0.330 m
I = 0.5 x 3.56 x 0.330 x 0.330 = 0.194 kgm^2
The formula for the rotational kinetic energy is given by

K = 0.5 x 0.194 x 179 x 179 = 3107.98 J
(b) radius, r = 0.714 m
I = 0.5 x 3.56 x 0.714 x 0.714 = 0.907 kgm^2
The formula for the rotational kinetic energy is given by

K = 0.5 x 0.907 x 179 x 179 = 14530.6 J
To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.
The tension in the vertical plane will be equivalent to the centripetal force therefore

Here,
m = mass
v = Velocity
r = Radius
The tension in the horizontal plane will be subject to the action of the weight, therefore

Matching both expressions with respect to the tension we will have to


Then we have that,


Rearranging to find the velocity we have that

The value of the angle is 14.5°, the acceleration (g) is 9.8m/s^2 and the radius is



Replacing we have that


Therefore the speed of each seat is 4.492m/s
The answer is kinetic energy
Answer:
paper burned and turned into smoke...
Explanation:
When a chemical reaction has taken place that means that whatever the starting variable is, (in this case it was the paper) then it cannot go back to its original state... you can also tell if a chemical reaction has taken place if the test releases any kind of gas, if there is a temperature change, or if there is a color change. Which this time it changed from paper into smoke which is a gas
Hope This Helps
The glasses that she should wear are the glasses that block horizontally polarized light coming from glares, like polaroid sunglasses, because these type of glasses block out the light being reflected from the water's surface by the vertically oriented polarizers in the lenses.