Answer:
Diffraction of sound wavelengths.
Explanation:
-A wave is able to bend around a corner due to the effects of diffraction. sound aves are capable of bending around corners in the same magnitude as it's wavelength making it possible to hear sounds around corners.
Answer:
Explanation:
according to Newton First Law of Motion (Law of Inertia); An object at rest will stay at rest, forever, as long as nothing pushes or pulls on it. An object in motion will stay in motion, traveling in a straight line, forever, until something pushes or pulls on it.
the marble will move in a straight line
V=IR so voltage is directly proportional to current. So for a given resistance increasing the voltage will result in a high current as well. This is because resistance is proportional to the voltage over the current. Ex: I=V/R
Hope this helped. THANKYOU for asking. <span />
Answer:
The heat added represents an energy change.
Explanation:
Answer:
The final temperature of the two objects is the same.
Explanation:
The expression for the heat energy in terms of mass, specific heat and the change in the temperature is as follows:

Here, Q is the heat energy, m is the mass of the object, c is the specific heat and
are the final temperature and initial temperature.
According to the given question, Two objects of the same mass, but made of different materials, are initially at the same temperature. Equal amounts of heat are added to each object.
............(1)
.............(2)
From (1) and (2),



Therefore, the final temperature of the two objects is the same.