The value for the slope is <span>M=1.13</span>
Answer with Explanation:
One hypothesis above would probably rely on the situation called <em>"inelastic collision." </em>The two carts are travelling towards each other at different speed. So, this means that once they collide, the kinetic energy will not be conserved but will be transferred as <em>sound energy, thermal energy or material deformation</em>. The impact will be great, thus a <u>greater fraction of kinetic energy will be lost from the system.</u>
The average radius(r) of each grain is r = 50 nanometers
= 50*10^-6 meters
Since it is spherical, so
Volume=(4/3)*pi*r^3
V= (4/3)*pi*(50*10^-6)^3
V=5.23599*10^-13 m^3
We are given the Density(ρ) =2600kg/m^3
We know that:
Density(p) = mass(m)/volume(V)
m = ρV
So the mass of a single grain is:
m = 5.23599*10^-13 * 2600 = 1.361357*10^-9 kg
The surface area of a grain is:
a = 4*pi*r^2
a = 4*pi*(50*10^-6)^2
a = 3.14*10^-8 m^2
Since we know the surface area and mass of a grain, the
conversion factor is:
1.361357*10^-9 kg / 3.14*10^-8 m^2
Find the Surface area of the cube:
cube = 6a^2
cube = 6*1.1^2 = 7.26m^2
multiply this by the converions ratio to get:
total mass of sand grains = (7.26 m^2 * 1.361357*10^-9 kg)
/ (3.14*10^-8 m^2)
total mass of sand grains = 0.3148 kg = 314.80 g
1.velocity and acceleration
2.
3.inertia
4.
5.speed
<span>Ans : Initial E = KE = ½mv² = ½ * 1.2kg * (2.2m/s)² = 2.9 J
max spring compression where both velocities are the same: conserve momentum:
1.2kg * 2.2m/s = (1.2 + 3.2)kg * v → v = 0.6 m/s
which means the combined KE = ½ * (1.2 + 3.2)kg * (0.6m/s)² = 0.79 J
The remaining energy went into the spring:
U = (2.9 - 0.79) J = 2.1 J = ½kx² = ½ * 554N/m * x²
x = 0.0076 m ↠(a)</span>