Well, there's a lot of friction going on there, so the snowball gradually
loses kinetic energy just from bouncing and plowing through the snow
on the ground.
But I don't think you're asking about that. I think you're ignoring that
for the moment, and asking how its kinetic energy changes as its
mass increases. We know that
Kinetic Energy = (1/2) (mass) (speed²)
and THAT seems to say that more mass means more kinetic energy.
So maybe the snowball's kinetic energy increases as it picks up
more mass.
Don't you believe it !
Remember: Energy always has to come from somewhere ... a motor,
a jet, a push, gravity ... something ! It doesn't just appear out of thin air.
If the snowball were rolling down hill, then it could get more kinetic energy
from gravity. But if it's rolling on level ground, then it can never have any
more kinetic energy than you gave it when you pushed it and let it go.
If snow or leaves stick to it and its mass increases, then its speed must
decrease, in order to keep the same kinetic energy.
Wave interference is the phenomenon that occurs when two waves meet while traveling along the same medium. The interference of waves causes the medium to take on a shape that results from the net effect of the two individual waves upon the particles of the medium.
None of the choices is correct.
If two runners take the same amount of time to run a mile,
they have the same average speed. But their velocities
are not the same unless both runners begin and end their
run at the same points.
Speed is (distance covered) divided by (time to cover the distance).
Velocity is not. It's something different.
'Velocity' is not just a bigger word for 'speed'.
Answer:

Explanation:
In this case the kinetic energy of the bike is converted into the heat energy between the area of contact of tyre and the road. This happens due to the work done by the frictional force between the surface to stop the relative motion between the road and the tyre.
Given:
- normal force on the rear tyre,

(as given in the question that the rear tyre supports half the combined weight of the bike and the rider.)
- distance dragged while stopping the tyre,

- coefficient of kinetic friction between the surfaces,

<u>Now, frictional force between the surfaces:</u>



<u>Now, the work done by the kinetic friction:</u>



According to the energy conservation this amount of energy is converted into thermal energy between the surfaces in contact, i.e. road and the tyre.
Answer:
-1
Explanation:
Electrons have a negative charge and protons have a positive charge. (+11) + (-12) = -1