Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr
It doesn't mean that the climate is changing, it is probably just the morning dew.
Answer:
209 m
Explanation:
The y-component of a vector is the magnitude times the sine of the angle.
y = 253 sin 55.8°
y = 209
Answer:
the time interval that an earth observer measures is 4 seconds
Explanation:
Given the data in the question;
speed of the spacecraft as it moves past the is 0.6 times the speed of light
we know that speed of light c = 3 × 10⁸ m/s
so speed of spacecraft v = 0.6 × c = 0.6c
time interval between ticks of the spacecraft clock Δt₀ = 3.2 seconds
Now, from time dilation;
t = Δt₀ / √( 1 - ( v² / c² ) )
t = Δt₀ / √( 1 - ( v/c )² )
we substitute
t = 3.2 / √( 1 - ( 0.6c / c )² )
t = 3.2 / √( 1 - ( 0.6 )² )
t = 3.2 / √( 1 - 0.36 )
t = 3.2 / √0.64
t = 3.2 / 0.8
t = 4 seconds
Therefore, the time interval that an earth observer measures is 4 seconds
Answer:
Without it, we could not survive on Earth. Earth orbits the sun due to the gravity of the sun, which maintains us at a convenient distance from it to enjoy the sun's warmth and light. It keeps the air we need to breathe and our atmosphere in place. Our planet is held together by gravity.