Answer:

Explanation:
The equation of the position in kinematics is given:

- x(0) is the initial position, in this it is 0
- v(0) is the initial velocity (20 m/s)
- a is the acceleration (2 m/s²)
So the equation will be:

Now, the Taylor polynomial equation is:

Using our position equation we can find f'(t)=v(t) and f''(x)=a(t). In our case a=0, so let's find each derivative.



Using the Taylor polynomial with a = 0 and take just the second order of the derivative.







Let's put t=1 so find the how far the car moves in the next second:


Therefore, the position in the next second is 21 m.
We need to know if the acceleration remains at this value to use this polynomial in the next minute, so I suggest that it would be reasonable to use this method just under this condition.
I hope it helps you!
Okay, I don't know if this question is supposed to be a trick question or not. The weight of the apple does not change as the plane travels up the atmosphere, but the MASS changes. Weight doesn't change no matter what environment you're in, but the mass changes in different environments. In this case, the weight is constant but the mass is decreasing as you go higher up.
Answer:
0.003333 s to 0.000125s or from 3.33ms to 0.125ms wher m is for milli
1.1m to 0.04125 m
Explanation:
T= 1/f=
if f= 300Hz then T = 1/300 =0.003333 s
if f= 8000 then T= 1/8000 = 0.000125s
now v=f×wave length
or wavelength = speed/ frequency
when f = 300 Hz
wavelength = 330/300=1.1 m
wavelength = 330/8000 = 0.04125m
note : i have taken speed of sound as 330 m/s you can take any value given in between 330m/s to 340m/s
Answer: -49m/s.
Explanation:
As the rock only falls, we will assume that the initial vertical velocity is zero.
We neglect the air friction, so the only force acting on the rock is the gravitational force, this means that the acceleration is -g = -9.8m/s^2.
Then we can write:
a(t) = -9.8m/s^2
To write the velocity of the rock, we must ingrate over time and get:
v(t) = (-9.8m/s^2)*t + v0
where v0 is the initial vertical velocity, and as we said above, v0 = 0m/s
Then the vertical velocity as a function of time is:
v(t) = (-9.8m/s^2)*t
Now, the question is:
"...If a rock falls for 5 seconds near the surface of the earth and with no air friction, it will reach a velocity of..."
Then we need to evaluate the velocity equation in t = 5 seconds.
v(5s) = (-9.8m/s^2)*5s = -49m/s.
Answer: A) reactants
Explanation:
Reactants are the substances that have chemical reactions when they are combined, whereas the product is what comes from the reactants’ chemical reactions.