Answer:
The second law: When a force is applied to a car, the change in motion is proportional to the force divided by the mass of the car. This law is expressed by the famous equation F = ma, where F is a force, m is the mass of the car, and a is the acceleration, or change in motion, of the car
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:

I think its <u>B</u> because it looks like it might indicate a future rain storm.
Voltage = current x resistance
since R is doubled, current must reduce by half.
So,
new current = 120/2 = 60mA