10/22 in simplest form is 5/11
Answer:
-4
Step-by-step explanation:
So we are given the expression: | y - x | + y - 1, and we have our values for (x,y): (-3,-6).
So, we can just start plugging things in and simplifying, so:
| -6 + 3 | - 6 - 1 = | -3 | -7
= 3 - 7
= -4
Based on the SAS congruence criterion, the statement that best describes Angie's statement is:
Two triangles having two pairs of congruent sides and a pair of congruent angles do not necessarily meet the SAS congruence criterion, therefore Angie is incorrect.
<h3 /><h3>What is congruency?</h3>
The Side-Angle-Side Congruence Theorem (SAS) defines two triangles to be congruent to each other if the included angle and two sides of one is congruent to the included angle and corresponding two sides of the other triangle.
An included angle is found between two sides that are under consideration.
See image attached below that demonstrates two triangles that are congruent by the SAS Congruence Theorem.
Thus, two triangles having two pairs of corresponding sides and one pair of corresponding angles that are congruent to each other is not enough justification for proving that the two triangles are congruent based on the SAS Congruence Theorem.
The one pair of corresponding angles that are congruent MUST be "INCLUDED ANGLES".
Therefore, based on the SAS congruence criterion, the statement that best describes Angie's statement is:
Two triangles having two pairs of congruent sides and a pair of congruent angles do not necessarily meet the SAS congruence criterion, therefore Angie is incorrect.
Learn more about congruency at
brainly.com/question/14418374
#SPJ1
Answer:
UNIF(2.66,3.33) minutes for all customer types.
Step-by-step explanation:
In the problem above, it was stated that the office arranged its customers into different sections to ensure optimum performance and minimize workload. Furthermore, there was a service time of UNIF(8,10) minutes for everyone. Since there are only three different types of customers, the service time can be estimated as UNIF(8/3,10/3) minutes = UNIF(2.66,3.33) minutes.