The first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
<h3>
Velocity of the wave</h3>
The velocity of the wave is calculated as follows;
v = √T/μ
where;
- T is tension
- μ is mass per unit length = 2 g/m = 0.002 kg/m
v = √(50/0.002)
v = 158.1 m/s
<h3>First harmonic or fundamental frequency of the wave</h3>
f₀ = v/λ
where;
f₀ = v/2L
f₀ = 158.1/(2 x 0.6)
f₀ = 131.8 Hz
<h3>Second harmonic of the wave</h3>
f₁ = 2f₀
f₁ = 2(131.8 Hz)
f₁ = 263.6 Hz
<h3>Third harmonic of the wave</h3>
f₂ = 3f₀
f₂ = 3(131.8 Hz)
f₂ = 395.4 Hz
Thus, the first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
Learn more about harmonics here: brainly.com/question/4290297
#SPJ1
Net force is basically the force an object has when changing direction, so the answer would be D.
Answer:
can you show a graph but if not i believe the answer is x=6m
Explanation:
Answer:Both
Explanation:
There are three ways to increase the induced voltage in electromagnetic induction:
1) increase the speed at which the conductor moves through the magnetic field. This means that the lines of flux are cut more quickly and more emf is induced.
2) use stronger magnets which provides a stronger magnetic field and more densely packed lines of flux.
3) use a coil of multiple loops.
Hence both technicians were correct.
Answer : Noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Explanation :
Noble gases are the chemical elements that are present in group 18 in the periodic table.
The elements are helium, neon, argon, krypton, xenon and radon.
They are chemically most stable except helium due to having the maximum number of 8 valence electrons can hold their outermost shell that means they have a complete octet.
They are rarely reacts with other elements to form compounds by gaining or losing electrons since they are already chemically stable.
Hence, the noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.