Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Answer:
a) 
b) 
Explanation:
a)
Given:
amount of heat transfer occurred,
initial temperature of car, 
final temperature of car, 
We know that the change in entropy is given by:

(heat is transferred into the system of car)

b)
amount of heat transfer form the system of house,
initial temperature of house, 
final temperature of house, 



Answer:
Your answer should be Incentives
Explanation:
Answer:
t = 4.1 seconds
Explanation:
It is given that,
Width of road which is to be crossed by a man is 8.25 m, it means it is distance to be covered.
Speed of man is 2.01 m/s
We need to find the time taken by the man to cross the road. It is a concept of speed. Speed of a person is given by total distance covered divided by time taken. So,

t is time taken

So, the time taken by the man to cross the road is 4.1 seconds.