His law exaplins/shows that the average distance of a planet from the Sun cubed is directly proportional to the orbital period squared.
<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>
Ideal gas law:
PV = nRT
P = pressure, V = volume, n = # of moles, R = gas constant, T = temperature
Equipartition theorem:
Each degree of freedom that a molecule has adds 0.5kT to its total internal energy where k = Boltzmann's constant and T = temperature
2nd law of thermodynamics:
A set of governing principles that restrict the direction of net heat flow (always hot to cold, heat engines are never 100% efficient, entropy always tends to increase, etc)
Clearly the answer is Choice A
Answer: Nuclear fusion.
Explanation: The sun is a medium-sized star, its radius is 695.510 km and its mass is equivalent to that obtained by bringing together about 110 planets equal to Earth (6371 km is its radius).
It has six layers: The core, the radioactive zone, the convective zone, the photosphere, the chromosphere and the corona.
Magnetic field disruptions near active regions can generate strong explosions in the sun such as sun flashes and coronal mass ejections. The degree of complexity of the sun´s magnetic field increases and decreases with the course of each sunspot cycle.
Sir Arthur Eddington was the first to evaluate all the data and dared to conjecture that nuclear fusion, the process that creates heavy elements from the fusion of lighter ones, could be responsible for the great production of the sun´s energy; this process make the sun´s energy was taken for the earth and the planet get back to the sun recycled energy. The sun has a very large and complex magnetic field; the average magnetic field of the sun is approximately 1 Gauss, almost twice as strong as the average magnetic field of the Earth´s surface (approximately 0.5 Gauss). Because the surface of the sun is more than 12.000 times larger than the Earth, the overall influence of the sun´s magnetic field is immensely large.
Work = (force) x (distance)
40,000 J = (20 N) x (distance)
Distance = (40,000 J) / (20 N)
= 2,000 meters
= 2 kilometers.
(20 N is not a huge force when it's being used to move a car.
It's only about 4.5 pounds.)