1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
14

A cart with an unknown mass is at rest on one side of a track. A student must find the mass of the cart by using Newton’s second

law. The student attaches a force probe to the cart and pulls it while keeping the force constant. A motion detector rests on the opposite end of the track to record the acceleration of the cart as it is pulled. The student uses the measured force and acceleration values and determines that the cart’s mass is 0.4kg . When placed on a balance, the cart’s mass is found to be 0.5kg . Which of the following could explain the difference in mass?
Answer choices:

A) The track was not level and was tilted slightly downward.

B) The student did not pull the cart with a force parallel to the track.

C) The wheels contain bearings that were rough and caused a significant amount of friction.

D) The motion sensor setting was incorrect. The student set it up so that motion away from the sensor would be the negative direction.
Physics
1 answer:
konstantin123 [22]3 years ago
5 0

Explanation:

D) The motion sensor setting was incorrect. The student set it up so that motion away from the sensor would be the negative direction.

You might be interested in
Which one of the following choices is an effective way to pervent low-back pain
tangare [24]
C. Maintain correct Posture
7 0
3 years ago
Which of these values is equivalent to the change in momentum of
iragen [17]
<span>A. An impulse of a force changes the momentum of a body and has the same units and dimensions as momentum.</span>
3 0
3 years ago
Read 2 more answers
What two forces are most responsible for the formation of the cascade mountains
Ilya [14]
<span>The two foremost forces that were involved in the creation of the Cascade mountains are those of the tidal and tectonic forces. Tidal forces helped in eroding anything that was there previously, and the tectonic forces caused the eruption of these mountains to take place.</span>
4 0
4 years ago
Read 2 more answers
Continuous sinusoidal perturbation Assume that the string is at rest and perfectly horizontal again, and we will restart the clo
Elena-2011 [213]

a) 3.14 \cdot 10^{-4} s

b) See plot attached

c) 10.0 m

d) 0.500 cm

Explanation:

a)

The position of the tip of the lever at time t is described by the equation:

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t] (1)

The generic equation that describes a wave is

y(t)=A sin (\frac{2\pi}{T} t) (2)

where

A is the amplitude of the wave

T is the period of the wave

t is the time

By comparing (1) and (2), we see that for the wave in this problem we have

\frac{2\pi}{T}=2.00\cdot 10^4 s^{-1}

Therefore, the period is

T=\frac{2\pi}{2.00\cdot 10^4}=3.14 \cdot 10^{-4} s

b)

The sketch of the profile of the wave until t = 4T is shown in attachment.

A wave is described by a sinusoidal function: in this problem, the wave is described by a sine, therefore at t = 0 the displacement is zero, y = 0.

The wave than periodically repeats itself every period. In this sketch, we draw the wave over 4 periods, so until t = 4T.

The maximum displacement of the wave is given by the value of y when sin(...)=1, and from eq(1), we see that this is equal to

y = 0.500 cm

So, this is the maximum displacement represented in the sketch.

c)

When standing waves are produced in a string, the ends of the string act as they are nodes (points with zero displacement): therefore, the wavelength of a wave in a string is equal to twice the length of the string itself:

\lambda=2L

where

\lambda is the wavelength of the wave

L is the length of the string

In this problem,

L = 5.00 m is the length of the string

Therefore, the wavelength is

\lambda =2(5.00)=10.0 m

d)

The amplitude of a wave is the magnitude of the maximum displacement of the wave, measured relative to the equilibrium position.

In this problem, we can easily infer the amplitude of this wave by looking at eq.(1).

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t]

And by comparing it with the general equation of a wave:

y(t)=A sin (\frac{2\pi}{T} t)

In fact, the maximum displacement occurs when the sine part is equal to 1, so when

sin(\frac{2\pi}{T}t)=1

which means that

y(t)=A

And therefore in this case,

y=0.500 cm

So, this is the displacement.

6 0
3 years ago
The activity of a radioisotope is found to decrease 40% of its original value in 2.59 x 10 s.
Rainbow [258]

Answer: 0.0353\ s^{-1}

Explanation:

Given

Radioactive material is found to decrease 40% of its original value in 2.59\times 10\ s

Sample at any time is given by

N=N_oe^{-\lambda t}

where, \lambda=\text{decay constant}

Put values

\Rightarrow 0.4N_o=N_oe^{-\lambda\cdot 2.59\times 10}\\\Rightarrow 0.4=e^{-\lambda\cdot 2.59\times 10

Taking natural logarithm both side

\Rightarrow \lambda=\dfrac{\ln 2.5}{25.9}\\\\\Rightarrow \lambda =0.0353\ s^{-1}

8 0
3 years ago
Other questions:
  • What is the orbital period of a spacecraft in a low orbit near the surface of mars? The radius of mars is 3.4×106m.
    8·1 answer
  • An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Doe
    10·2 answers
  • A wave with a greater amplitude will transfer . . . . \
    5·1 answer
  • As a rocket travels upward from earth, air resistance decreases along with the force of gravity. The rocket's mass also decrease
    15·1 answer
  • Look at the figure, which shows the motion of three balls. The curved paths followed by balls B and C are examples of _____. pro
    12·2 answers
  • Monochromatic light is incident on a grating that is 75 mmwide
    8·1 answer
  • Two moles of helium gas initially at 438 K and 0.44 atm are compressed isothermally to 1.61 atm. Find the final volume of the ga
    10·1 answer
  • Water is poured slowly into the container until the water level has risen into tubes A, B, and C. The water doesn't overflow fro
    13·1 answer
  • Student A walks up a 10 meter staircase. Student B runs up the same staircase in less
    14·1 answer
  • Question 2
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!